Filtros : "International Journal of Approximate Reasoning" "2020" Limpar

Filtros



Limitar por data


  • Fonte: International Journal of Approximate Reasoning. Unidades: EP, IME

    Assuntos: PROGRAMAÇÃO LÓGICA, COMPUTABILIDADE E COMPLEXIDADE

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COZMAN, Fabio Gagliardi e MAUÁ, Denis Deratani. The joy of probabilistic answer set programming: semantics, complexity, expressivity, inference. International Journal of Approximate Reasoning, v. 125, p. 218-239, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.ijar.2020.07.004. Acesso em: 09 nov. 2025.
    • APA

      Cozman, F. G., & Mauá, D. D. (2020). The joy of probabilistic answer set programming: semantics, complexity, expressivity, inference. International Journal of Approximate Reasoning, 125, 218-239. doi:10.1016/j.ijar.2020.07.004
    • NLM

      Cozman FG, Mauá DD. The joy of probabilistic answer set programming: semantics, complexity, expressivity, inference [Internet]. International Journal of Approximate Reasoning. 2020 ; 125 218-239.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.ijar.2020.07.004
    • Vancouver

      Cozman FG, Mauá DD. The joy of probabilistic answer set programming: semantics, complexity, expressivity, inference [Internet]. International Journal of Approximate Reasoning. 2020 ; 125 218-239.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.ijar.2020.07.004
  • Fonte: International Journal of Approximate Reasoning. Unidades: IME, EP

    Assunto: COMPUTABILIDADE E COMPLEXIDADE

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MAUÁ, Denis Deratani e COZMAN, Fabio Gagliardi. Complexity results for probabilistic answer set programming. International Journal of Approximate Reasoning, v. 118, p. 133-154, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.ijar.2019.12.003. Acesso em: 09 nov. 2025.
    • APA

      Mauá, D. D., & Cozman, F. G. (2020). Complexity results for probabilistic answer set programming. International Journal of Approximate Reasoning, 118, 133-154. doi:10.1016/j.ijar.2019.12.003
    • NLM

      Mauá DD, Cozman FG. Complexity results for probabilistic answer set programming [Internet]. International Journal of Approximate Reasoning. 2020 ;118 133-154.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.ijar.2019.12.003
    • Vancouver

      Mauá DD, Cozman FG. Complexity results for probabilistic answer set programming [Internet]. International Journal of Approximate Reasoning. 2020 ;118 133-154.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.ijar.2019.12.003
  • Fonte: International Journal of Approximate Reasoning. Unidade: IME

    Assunto: MODELOS PARA PROCESSOS ESTOCÁSTICOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MATTEI, Lilith et al. Tractable inference in credal sentential decision diagrams. International Journal of Approximate Reasoning, v. 125, p. 26-48, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.ijar.2020.06.005. Acesso em: 09 nov. 2025.
    • APA

      Mattei, L., Antonucci, A., Mauá, D. D., Facchini, A., & Villanueva Llerena, J. G. (2020). Tractable inference in credal sentential decision diagrams. International Journal of Approximate Reasoning, 125, 26-48. doi:10.1016/j.ijar.2020.06.005
    • NLM

      Mattei L, Antonucci A, Mauá DD, Facchini A, Villanueva Llerena JG. Tractable inference in credal sentential decision diagrams [Internet]. International Journal of Approximate Reasoning. 2020 ; 125 26-48.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.ijar.2020.06.005
    • Vancouver

      Mattei L, Antonucci A, Mauá DD, Facchini A, Villanueva Llerena JG. Tractable inference in credal sentential decision diagrams [Internet]. International Journal of Approximate Reasoning. 2020 ; 125 26-48.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.ijar.2020.06.005
  • Fonte: International Journal of Approximate Reasoning. Unidades: IME, EP

    Assuntos: MODELOS PARA PROCESSOS ESTOCÁSTICOS, PROBABILIDADE

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MAUÁ, Denis Deratani e COZMAN, Fabio Gagliardi. Thirty years of credal networks: specification, algorithms and complexity. International Journal of Approximate Reasoning, v. 126, p. 133-157, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.ijar.2020.08.009. Acesso em: 09 nov. 2025.
    • APA

      Mauá, D. D., & Cozman, F. G. (2020). Thirty years of credal networks: specification, algorithms and complexity. International Journal of Approximate Reasoning, 126, 133-157. doi:10.1016/j.ijar.2020.08.009
    • NLM

      Mauá DD, Cozman FG. Thirty years of credal networks: specification, algorithms and complexity [Internet]. International Journal of Approximate Reasoning. 2020 ; 126 133-157.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.ijar.2020.08.009
    • Vancouver

      Mauá DD, Cozman FG. Thirty years of credal networks: specification, algorithms and complexity [Internet]. International Journal of Approximate Reasoning. 2020 ; 126 133-157.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.ijar.2020.08.009
  • Fonte: International Journal of Approximate Reasoning. Unidade: IME

    Assuntos: MODELOS PARA PROCESSOS ESTOCÁSTICOS, APRENDIZADO COMPUTACIONAL

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VILLANUEVA LLERENA, Julissa e MAUÁ, Denis Deratani. Efficient algorithms for robustness analysis of maximum a posteriori inference in selective sum-product networks. International Journal of Approximate Reasoning, v. 126, p. 158-180-, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.ijar.2020.07.008. Acesso em: 09 nov. 2025.
    • APA

      Villanueva Llerena, J., & Mauá, D. D. (2020). Efficient algorithms for robustness analysis of maximum a posteriori inference in selective sum-product networks. International Journal of Approximate Reasoning, 126, 158-180-. doi:10.1016/j.ijar.2020.07.008
    • NLM

      Villanueva Llerena J, Mauá DD. Efficient algorithms for robustness analysis of maximum a posteriori inference in selective sum-product networks [Internet]. International Journal of Approximate Reasoning. 2020 ; 126 158-180-.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.ijar.2020.07.008
    • Vancouver

      Villanueva Llerena J, Mauá DD. Efficient algorithms for robustness analysis of maximum a posteriori inference in selective sum-product networks [Internet]. International Journal of Approximate Reasoning. 2020 ; 126 158-180-.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.ijar.2020.07.008

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025