Filtros : "Computational Optimization and Applications" "Martínez, José Mário" Limpar

Filtros



Limitar por data


  • Fonte: Computational Optimization and Applications. Unidade: IME

    Assunto: OTIMIZAÇÃO NÃO LINEAR

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e HAESER, Gabriel e MARTÍNEZ, José Mário. Safeguarded augmented Lagrangian algorithms with scaled stopping criterion for the subproblems. Computational Optimization and Applications, v. 91, p. 491-509, 2025Tradução . . Disponível em: https://doi.org/10.1007/s10589-024-00572-w. Acesso em: 08 nov. 2025.
    • APA

      Birgin, E. J. G., Haeser, G., & Martínez, J. M. (2025). Safeguarded augmented Lagrangian algorithms with scaled stopping criterion for the subproblems. Computational Optimization and Applications, 91, 491-509. doi:10.1007/s10589-024-00572-w
    • NLM

      Birgin EJG, Haeser G, Martínez JM. Safeguarded augmented Lagrangian algorithms with scaled stopping criterion for the subproblems [Internet]. Computational Optimization and Applications. 2025 ; 91 491-509.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s10589-024-00572-w
    • Vancouver

      Birgin EJG, Haeser G, Martínez JM. Safeguarded augmented Lagrangian algorithms with scaled stopping criterion for the subproblems [Internet]. Computational Optimization and Applications. 2025 ; 91 491-509.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s10589-024-00572-w
  • Fonte: Computational Optimization and Applications. Unidade: IME

    Assuntos: INTERPOLAÇÃO, MÉTODOS ITERATIVOS, APROXIMAÇÃO POR MÍNIMOS QUADRADOS, MÉTODOS NUMÉRICOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. Accelerated derivative-free nonlinear least-squares applied to the estimation of Manning coefficients. Computational Optimization and Applications, v. 81, p. 689–715, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10589-021-00344-w. Acesso em: 08 nov. 2025.
    • APA

      Birgin, E. J. G., & Martínez, J. M. (2022). Accelerated derivative-free nonlinear least-squares applied to the estimation of Manning coefficients. Computational Optimization and Applications, 81, 689–715. doi:10.1007/s10589-021-00344-w
    • NLM

      Birgin EJG, Martínez JM. Accelerated derivative-free nonlinear least-squares applied to the estimation of Manning coefficients [Internet]. Computational Optimization and Applications. 2022 ; 81 689–715.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s10589-021-00344-w
    • Vancouver

      Birgin EJG, Martínez JM. Accelerated derivative-free nonlinear least-squares applied to the estimation of Manning coefficients [Internet]. Computational Optimization and Applications. 2022 ; 81 689–715.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s10589-021-00344-w
  • Fonte: Computational Optimization and Applications. Unidade: IME

    Assuntos: PROGRAMAÇÃO NÃO LINEAR, MÉTODOS NUMÉRICOS, PROGRAMAÇÃO MATEMÁTICA

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. Block coordinate descent for smooth nonconvex constrained minimization. Computational Optimization and Applications, v. 83, p. 1-27, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10589-022-00389-5. Acesso em: 08 nov. 2025.
    • APA

      Birgin, E. J. G., & Martínez, J. M. (2022). Block coordinate descent for smooth nonconvex constrained minimization. Computational Optimization and Applications, 83, 1-27. doi:10.1007/s10589-022-00389-5
    • NLM

      Birgin EJG, Martínez JM. Block coordinate descent for smooth nonconvex constrained minimization [Internet]. Computational Optimization and Applications. 2022 ; 83 1-27.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s10589-022-00389-5
    • Vancouver

      Birgin EJG, Martínez JM. Block coordinate descent for smooth nonconvex constrained minimization [Internet]. Computational Optimization and Applications. 2022 ; 83 1-27.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s10589-022-00389-5
  • Fonte: Computational Optimization and Applications. Unidade: IME

    Assunto: PROGRAMAÇÃO NÃO LINEAR

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. Structured minimal-memory inexact quasi-Newton method and secant preconditioners for augmented Lagrangian optimization. Computational Optimization and Applications, v. 39, n. 1, p. 1-16, 2008Tradução . . Disponível em: https://doi.org/10.1007/s10589-007-9050-z. Acesso em: 08 nov. 2025.
    • APA

      Birgin, E. J. G., & Martínez, J. M. (2008). Structured minimal-memory inexact quasi-Newton method and secant preconditioners for augmented Lagrangian optimization. Computational Optimization and Applications, 39( 1), 1-16. doi:10.1007/s10589-007-9050-z
    • NLM

      Birgin EJG, Martínez JM. Structured minimal-memory inexact quasi-Newton method and secant preconditioners for augmented Lagrangian optimization [Internet]. Computational Optimization and Applications. 2008 ; 39( 1): 1-16.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s10589-007-9050-z
    • Vancouver

      Birgin EJG, Martínez JM. Structured minimal-memory inexact quasi-Newton method and secant preconditioners for augmented Lagrangian optimization [Internet]. Computational Optimization and Applications. 2008 ; 39( 1): 1-16.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s10589-007-9050-z
  • Fonte: Computational Optimization and Applications. Unidade: IME

    Assunto: MÉTODOS NUMÉRICOS DE OTIMIZAÇÃO

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. Large-scale active-set box-constrained optimization method with spectral projected gradients. Computational Optimization and Applications, v. 23, n. 1, p. 101-125, 2002Tradução . . Disponível em: https://doi.org/10.1023/A:1019928808826. Acesso em: 08 nov. 2025.
    • APA

      Birgin, E. J. G., & Martínez, J. M. (2002). Large-scale active-set box-constrained optimization method with spectral projected gradients. Computational Optimization and Applications, 23( 1), 101-125. doi:10.1023/A:1019928808826
    • NLM

      Birgin EJG, Martínez JM. Large-scale active-set box-constrained optimization method with spectral projected gradients [Internet]. Computational Optimization and Applications. 2002 ; 23( 1): 101-125.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1023/A:1019928808826
    • Vancouver

      Birgin EJG, Martínez JM. Large-scale active-set box-constrained optimization method with spectral projected gradients [Internet]. Computational Optimization and Applications. 2002 ; 23( 1): 101-125.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1023/A:1019928808826

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025