Filtros : "CARVALHO, ALEXANDRE NOLASCO DE" "EQUAÇÕES DA ONDA" Removido: "Applied Mathematics and Optimization" Limpar

Filtros



Refine with date range


  • Source: Stochastics and Dynamics. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS ESTOCÁSTICAS, ATRATORES, SISTEMAS DISSIPATIVO, EQUAÇÕES DA ONDA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARABALLO, Tomás et al. Continuity and topological structural stability for nonautonomous random attractors. Stochastics and Dynamics, v. No 2022, n. 7, p. 2240024-1-2240024-28, 2022Tradução . . Disponível em: https://doi.org/10.1142/S021949372240024X. Acesso em: 12 dez. 2025.
    • APA

      Caraballo, T., Langa, J. A., Carvalho, A. N. de, & Oliveira-Sousa, A. do N. (2022). Continuity and topological structural stability for nonautonomous random attractors. Stochastics and Dynamics, No 2022( 7), 2240024-1-2240024-28. doi:10.1142/S021949372240024X
    • NLM

      Caraballo T, Langa JA, Carvalho AN de, Oliveira-Sousa A do N. Continuity and topological structural stability for nonautonomous random attractors [Internet]. Stochastics and Dynamics. 2022 ; No 2022( 7): 2240024-1-2240024-28.[citado 2025 dez. 12 ] Available from: https://doi.org/10.1142/S021949372240024X
    • Vancouver

      Caraballo T, Langa JA, Carvalho AN de, Oliveira-Sousa A do N. Continuity and topological structural stability for nonautonomous random attractors [Internet]. Stochastics and Dynamics. 2022 ; No 2022( 7): 2240024-1-2240024-28.[citado 2025 dez. 12 ] Available from: https://doi.org/10.1142/S021949372240024X
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS NÃO LINEARES, EQUAÇÕES DA ONDA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARABALLO, Tomás et al. The effect of a small bounded noise on the hyperbolicity for autonomous semilinear differential equations. Journal of Mathematical Analysis and Applications, v. 500, n. 2, p. 1-27, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2021.125134. Acesso em: 12 dez. 2025.
    • APA

      Caraballo, T., Carvalho, A. N. de, Langa, J. A., & Oliveira-Sousa, A. do N. (2021). The effect of a small bounded noise on the hyperbolicity for autonomous semilinear differential equations. Journal of Mathematical Analysis and Applications, 500( 2), 1-27. doi:10.1016/j.jmaa.2021.125134
    • NLM

      Caraballo T, Carvalho AN de, Langa JA, Oliveira-Sousa A do N. The effect of a small bounded noise on the hyperbolicity for autonomous semilinear differential equations [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 500( 2): 1-27.[citado 2025 dez. 12 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125134
    • Vancouver

      Caraballo T, Carvalho AN de, Langa JA, Oliveira-Sousa A do N. The effect of a small bounded noise on the hyperbolicity for autonomous semilinear differential equations [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 500( 2): 1-27.[citado 2025 dez. 12 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125134
  • Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DA ONDA, ATRATORES

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, F. D. M et al. Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics. . São Carlos: ICMC-USP. Disponível em: http://repositorio.icmc.usp.br//handle/RIICMC/6561. Acesso em: 12 dez. 2025. , 2017
    • APA

      Bezerra, F. D. M., Carvalho, A. N. de, Cholewa, J. W., & Nascimento, M. J. D. (2017). Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics. São Carlos: ICMC-USP. Recuperado de http://repositorio.icmc.usp.br//handle/RIICMC/6561
    • NLM

      Bezerra FDM, Carvalho AN de, Cholewa JW, Nascimento MJD. Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics [Internet]. 2017 ;[citado 2025 dez. 12 ] Available from: http://repositorio.icmc.usp.br//handle/RIICMC/6561
    • Vancouver

      Bezerra FDM, Carvalho AN de, Cholewa JW, Nascimento MJD. Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics [Internet]. 2017 ;[citado 2025 dez. 12 ] Available from: http://repositorio.icmc.usp.br//handle/RIICMC/6561
  • Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DA ONDA, ATRATORES

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORTOLAN, M. C e CARVALHO, Alexandre Nolasco de. Strongly damped wave equations and its Yosida approximations. . São Carlos: ICMC-USP. Disponível em: http://repositorio.icmc.usp.br//handle/RIICMC/6560. Acesso em: 12 dez. 2025. , 2017
    • APA

      Bortolan, M. C., & Carvalho, A. N. de. (2017). Strongly damped wave equations and its Yosida approximations. São Carlos: ICMC-USP. Recuperado de http://repositorio.icmc.usp.br//handle/RIICMC/6560
    • NLM

      Bortolan MC, Carvalho AN de. Strongly damped wave equations and its Yosida approximations [Internet]. 2017 ;[citado 2025 dez. 12 ] Available from: http://repositorio.icmc.usp.br//handle/RIICMC/6560
    • Vancouver

      Bortolan MC, Carvalho AN de. Strongly damped wave equations and its Yosida approximations [Internet]. 2017 ;[citado 2025 dez. 12 ] Available from: http://repositorio.icmc.usp.br//handle/RIICMC/6560
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DA ONDA, ATRATORES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, F. D. M et al. Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics. Journal of Mathematical Analysis and Applications, v. 450, n. 1, p. 377-405, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2017.01.024. Acesso em: 12 dez. 2025.
    • APA

      Bezerra, F. D. M., Carvalho, A. N. de, Cholewa, J. W., & Nascimento, M. J. D. (2017). Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics. Journal of Mathematical Analysis and Applications, 450( 1), 377-405. doi:10.1016/j.jmaa.2017.01.024
    • NLM

      Bezerra FDM, Carvalho AN de, Cholewa JW, Nascimento MJD. Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 450( 1): 377-405.[citado 2025 dez. 12 ] Available from: https://doi.org/10.1016/j.jmaa.2017.01.024
    • Vancouver

      Bezerra FDM, Carvalho AN de, Cholewa JW, Nascimento MJD. Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 450( 1): 377-405.[citado 2025 dez. 12 ] Available from: https://doi.org/10.1016/j.jmaa.2017.01.024

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025