Filtros : "Mathematical Problems in Engineering" "2009" Limpar

Filtros



Limitar por data


  • Fonte: Mathematical Problems in Engineering. Unidade: EP

    Assunto: REDE DE TELECOMUNICAÇÕES

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BUENO, Átila Madureira e FERREIRA, André Alves e PIQUEIRA, José Roberto Castilho. Fully Connected PLL Networks: How Filter Determines the Number of Nodes. Mathematical Problems in Engineering, v. 2009, 2009Tradução . . Disponível em: https://doi.org/10.1155/2009/256765. Acesso em: 11 nov. 2025.
    • APA

      Bueno, Á. M., Ferreira, A. A., & Piqueira, J. R. C. (2009). Fully Connected PLL Networks: How Filter Determines the Number of Nodes. Mathematical Problems in Engineering, 2009. doi:10.1155/2009/256765
    • NLM

      Bueno ÁM, Ferreira AA, Piqueira JRC. Fully Connected PLL Networks: How Filter Determines the Number of Nodes [Internet]. Mathematical Problems in Engineering. 2009 ; 2009[citado 2025 nov. 11 ] Available from: https://doi.org/10.1155/2009/256765
    • Vancouver

      Bueno ÁM, Ferreira AA, Piqueira JRC. Fully Connected PLL Networks: How Filter Determines the Number of Nodes [Internet]. Mathematical Problems in Engineering. 2009 ; 2009[citado 2025 nov. 11 ] Available from: https://doi.org/10.1155/2009/256765
  • Fonte: Mathematical Problems in Engineering. Unidade: EP

    Assunto: CAOS (SISTEMAS DINÂMICOS)

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EISENCRAFT, Marcio e FANGANIELLO, Renato D e BACCALÁ, Luiz Antonio. Synchronization of discrete-time chaotic systems in bandlimited channels. Mathematical Problems in Engineering, v. 2009, 2009Tradução . . Disponível em: https://doi.org/10.1155/2009/207971. Acesso em: 11 nov. 2025.
    • APA

      Eisencraft, M., Fanganiello, R. D., & Baccalá, L. A. (2009). Synchronization of discrete-time chaotic systems in bandlimited channels. Mathematical Problems in Engineering, 2009. doi:10.1155/2009/207971
    • NLM

      Eisencraft M, Fanganiello RD, Baccalá LA. Synchronization of discrete-time chaotic systems in bandlimited channels [Internet]. Mathematical Problems in Engineering. 2009 ; 2009[citado 2025 nov. 11 ] Available from: https://doi.org/10.1155/2009/207971
    • Vancouver

      Eisencraft M, Fanganiello RD, Baccalá LA. Synchronization of discrete-time chaotic systems in bandlimited channels [Internet]. Mathematical Problems in Engineering. 2009 ; 2009[citado 2025 nov. 11 ] Available from: https://doi.org/10.1155/2009/207971
  • Fonte: Mathematical Problems in Engineering. Unidade: EESC

    Assuntos: SISTEMAS NÃO LINEARES, TRAJETÓRIA, ALGORITMOS

    Acesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARI, Elmer Pablo Tito et al. Trajectory sensitivity method and master-slave synchronization to estimate parameters of nonlinear systems. Mathematical Problems in Engineering, v. 2009, p. 1-14, 2009Tradução . . Disponível em: http://www.hindawi.com/journals/mpe/2009/387317.abs.html. Acesso em: 11 nov. 2025.
    • APA

      Cari, E. P. T., Theodoro, E. A. R., Mijolaro, A. P., Bretas, N. G., & Alberto, L. F. C. (2009). Trajectory sensitivity method and master-slave synchronization to estimate parameters of nonlinear systems. Mathematical Problems in Engineering, 2009, 1-14. Recuperado de http://www.hindawi.com/journals/mpe/2009/387317.abs.html
    • NLM

      Cari EPT, Theodoro EAR, Mijolaro AP, Bretas NG, Alberto LFC. Trajectory sensitivity method and master-slave synchronization to estimate parameters of nonlinear systems [Internet]. Mathematical Problems in Engineering. 2009 ; 2009 1-14.[citado 2025 nov. 11 ] Available from: http://www.hindawi.com/journals/mpe/2009/387317.abs.html
    • Vancouver

      Cari EPT, Theodoro EAR, Mijolaro AP, Bretas NG, Alberto LFC. Trajectory sensitivity method and master-slave synchronization to estimate parameters of nonlinear systems [Internet]. Mathematical Problems in Engineering. 2009 ; 2009 1-14.[citado 2025 nov. 11 ] Available from: http://www.hindawi.com/journals/mpe/2009/387317.abs.html
  • Fonte: Mathematical Problems in Engineering. Unidade: EESC

    Assuntos: MÉTODO DOS ELEMENTOS FINITOS, CASCAS (ENGENHARIA)

    Acesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CODA, Humberto Breves e PACCOLA, Rodrigo Ribeiro. Unconstrained finite element for geometrical nonlinear dynamics of shells. Mathematical Problems in Engineering, v. 2009, p. 1-32, 2009Tradução . . Disponível em: http://downloads.hindawi.com/journals/mpe/2009/575131.pdf. Acesso em: 11 nov. 2025.
    • APA

      Coda, H. B., & Paccola, R. R. (2009). Unconstrained finite element for geometrical nonlinear dynamics of shells. Mathematical Problems in Engineering, 2009, 1-32. Recuperado de http://downloads.hindawi.com/journals/mpe/2009/575131.pdf
    • NLM

      Coda HB, Paccola RR. Unconstrained finite element for geometrical nonlinear dynamics of shells [Internet]. Mathematical Problems in Engineering. 2009 ; 2009 1-32.[citado 2025 nov. 11 ] Available from: http://downloads.hindawi.com/journals/mpe/2009/575131.pdf
    • Vancouver

      Coda HB, Paccola RR. Unconstrained finite element for geometrical nonlinear dynamics of shells [Internet]. Mathematical Problems in Engineering. 2009 ; 2009 1-32.[citado 2025 nov. 11 ] Available from: http://downloads.hindawi.com/journals/mpe/2009/575131.pdf
  • Fonte: Mathematical Problems in Engineering. Unidade: EESC

    Assuntos: CAOS (SISTEMAS DINÂMICOS), ESTABILIDADE DE LIAPUNOV

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARBOZA, Ruy. Diffusive synchronization of hyperchaotic Lorenz systems. Mathematical Problems in Engineering, v. 2009, p. 1-14, 2009Tradução . . Disponível em: https://doi.org/10.1155/2009/174546. Acesso em: 11 nov. 2025.
    • APA

      Barboza, R. (2009). Diffusive synchronization of hyperchaotic Lorenz systems. Mathematical Problems in Engineering, 2009, 1-14. doi:10.1155/2009/174546
    • NLM

      Barboza R. Diffusive synchronization of hyperchaotic Lorenz systems [Internet]. Mathematical Problems in Engineering. 2009 ; 2009 1-14.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1155/2009/174546
    • Vancouver

      Barboza R. Diffusive synchronization of hyperchaotic Lorenz systems [Internet]. Mathematical Problems in Engineering. 2009 ; 2009 1-14.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1155/2009/174546
  • Fonte: Mathematical Problems in Engineering. Unidade: EACH

    Assuntos: PLATAFORMA CONTINENTAL, NÍVEL DO MAR (VARIAÇÃO;MÉTODOS MATEMÁTICOS), OCEANOGRAFIA GEOLÓGICA, GEOMORFOLOGIA LITORÂNEA, GEOMORFOMETRIA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BAPTISTA, Murilo da Silva e CONTI, Luis Americo. The staircase structure of the Southern Brazilian Continental Shelf. Mathematical Problems in Engineering, v. 2009, p. 1-17, 2009Tradução . . Disponível em: https://doi.org/10.1155/2009/624861. Acesso em: 11 nov. 2025.
    • APA

      Baptista, M. da S., & Conti, L. A. (2009). The staircase structure of the Southern Brazilian Continental Shelf. Mathematical Problems in Engineering, 2009, 1-17. doi:10.1155/2009/624861
    • NLM

      Baptista M da S, Conti LA. The staircase structure of the Southern Brazilian Continental Shelf [Internet]. Mathematical Problems in Engineering. 2009 ;2009 1-17.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1155/2009/624861
    • Vancouver

      Baptista M da S, Conti LA. The staircase structure of the Southern Brazilian Continental Shelf [Internet]. Mathematical Problems in Engineering. 2009 ;2009 1-17.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1155/2009/624861
  • Fonte: Mathematical Problems in Engineering. Unidade: IF

    Assunto: SISTEMAS DINÂMICOS

    Acesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOUZA, Silvio L. T. de e CALDAS, Iberê Luiz e VIANA, Ricardo L. Multistability and self-similarity in the parameter-space of a vibro-impact system. Mathematical Problems in Engineering, p. 1-11, 2009Tradução . . Disponível em: http://downloads.hindawi.com/journals/mpe/2009/290356.pdf. Acesso em: 11 nov. 2025.
    • APA

      Souza, S. L. T. de, Caldas, I. L., & Viana, R. L. (2009). Multistability and self-similarity in the parameter-space of a vibro-impact system. Mathematical Problems in Engineering, 1-11. Recuperado de http://downloads.hindawi.com/journals/mpe/2009/290356.pdf
    • NLM

      Souza SLT de, Caldas IL, Viana RL. Multistability and self-similarity in the parameter-space of a vibro-impact system [Internet]. Mathematical Problems in Engineering. 2009 ; 1-11.[citado 2025 nov. 11 ] Available from: http://downloads.hindawi.com/journals/mpe/2009/290356.pdf
    • Vancouver

      Souza SLT de, Caldas IL, Viana RL. Multistability and self-similarity in the parameter-space of a vibro-impact system [Internet]. Mathematical Problems in Engineering. 2009 ; 1-11.[citado 2025 nov. 11 ] Available from: http://downloads.hindawi.com/journals/mpe/2009/290356.pdf
  • Fonte: Mathematical Problems in Engineering. Unidade: EESC

    Assuntos: SISTEMAS NÃO LINEARES, AEROELASTICIDADE DE AERONAVES

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARQUES, Flavio Donizeti e VASCONCELLOS, Rui Marcos Grombone de. Chaotic patterns in aeroelastic signals. Mathematical Problems in Engineering, v. 2009, p. 1-19, 2009Tradução . . Disponível em: https://doi.org/10.1155/2009/802970. Acesso em: 11 nov. 2025.
    • APA

      Marques, F. D., & Vasconcellos, R. M. G. de. (2009). Chaotic patterns in aeroelastic signals. Mathematical Problems in Engineering, 2009, 1-19. doi:10.1155/2009/802970
    • NLM

      Marques FD, Vasconcellos RMG de. Chaotic patterns in aeroelastic signals [Internet]. Mathematical Problems in Engineering. 2009 ; 2009 1-19.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1155/2009/802970
    • Vancouver

      Marques FD, Vasconcellos RMG de. Chaotic patterns in aeroelastic signals [Internet]. Mathematical Problems in Engineering. 2009 ; 2009 1-19.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1155/2009/802970
  • Fonte: Mathematical Problems in Engineering. Unidade: EP

    Assuntos: ESCOAMENTO, VISCOSIDADE DO FLUXO DOS FLUÍDOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARANHA, José Augusto Penteado et al. Flow around a slender circular cylinder: a case study on distributed hopf bifurcation: review article. Mathematical Problems in Engineering, v. 2009, 2009Tradução . . Disponível em: https://doi.org/10.1155/2009/526945. Acesso em: 11 nov. 2025.
    • APA

      Aranha, J. A. P., Burr, K. P., Barbeiro, I. de C., Korkischko, I., & Meneghini, J. R. (2009). Flow around a slender circular cylinder: a case study on distributed hopf bifurcation: review article. Mathematical Problems in Engineering, 2009. doi:10.1155/2009/526945
    • NLM

      Aranha JAP, Burr KP, Barbeiro I de C, Korkischko I, Meneghini JR. Flow around a slender circular cylinder: a case study on distributed hopf bifurcation: review article [Internet]. Mathematical Problems in Engineering. 2009 ; 2009[citado 2025 nov. 11 ] Available from: https://doi.org/10.1155/2009/526945
    • Vancouver

      Aranha JAP, Burr KP, Barbeiro I de C, Korkischko I, Meneghini JR. Flow around a slender circular cylinder: a case study on distributed hopf bifurcation: review article [Internet]. Mathematical Problems in Engineering. 2009 ; 2009[citado 2025 nov. 11 ] Available from: https://doi.org/10.1155/2009/526945

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025