Filtros : "Journal of Differential Equations" "2021" Limpar

Filtros



Refine with date range


  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: SIMETRIA, INVARIANTES, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Wendel Leite da e MOREIRA DOS SANTOS, Ederson. Asymptotic profile and Morse index of the radial solutions of the Hénon equation. Journal of Differential Equations, v. 287, p. 212-235, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.03.050. Acesso em: 27 nov. 2025.
    • APA

      Silva, W. L. da, & Moreira dos Santos, E. (2021). Asymptotic profile and Morse index of the radial solutions of the Hénon equation. Journal of Differential Equations, 287, 212-235. doi:10.1016/j.jde.2021.03.050
    • NLM

      Silva WL da, Moreira dos Santos E. Asymptotic profile and Morse index of the radial solutions of the Hénon equation [Internet]. Journal of Differential Equations. 2021 ; 287 212-235.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2021.03.050
    • Vancouver

      Silva WL da, Moreira dos Santos E. Asymptotic profile and Morse index of the radial solutions of the Hénon equation [Internet]. Journal of Differential Equations. 2021 ; 287 212-235.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2021.03.050
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, TEORIA DA BIFURCAÇÃO, ATRATORES, OPERADORES

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e MOREIRA, Estefani Moraes. Stability and hyperbolicity of equilibria for a scalar nonlocal one-dimensional quasilinear parabolic problem. Journal of Differential Equations, v. No 2021, p. 312-336, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.07.044. Acesso em: 27 nov. 2025.
    • APA

      Carvalho, A. N. de, & Moreira, E. M. (2021). Stability and hyperbolicity of equilibria for a scalar nonlocal one-dimensional quasilinear parabolic problem. Journal of Differential Equations, No 2021, 312-336. doi:10.1016/j.jde.2021.07.044
    • NLM

      Carvalho AN de, Moreira EM. Stability and hyperbolicity of equilibria for a scalar nonlocal one-dimensional quasilinear parabolic problem [Internet]. Journal of Differential Equations. 2021 ; No 2021 312-336.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2021.07.044
    • Vancouver

      Carvalho AN de, Moreira EM. Stability and hyperbolicity of equilibria for a scalar nonlocal one-dimensional quasilinear parabolic problem [Internet]. Journal of Differential Equations. 2021 ; No 2021 312-336.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2021.07.044
  • Source: Journal of Differential Equations. Unidades: FFCLRP, ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, SEMIGRUPOS DE OPERADORES LINEARES, ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HERNANDEZ, Eduardo e FERNANDES, Denis e WU, Jianhong. Existence and uniqueness of solutions, well-posedness and global attractor for abstract differential equations with state-dependent delay. Journal of Differential Equations, v. No 2021, p. 753-806, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.09.014. Acesso em: 27 nov. 2025.
    • APA

      Hernandez, E., Fernandes, D., & Wu, J. (2021). Existence and uniqueness of solutions, well-posedness and global attractor for abstract differential equations with state-dependent delay. Journal of Differential Equations, No 2021, 753-806. doi:10.1016/j.jde.2021.09.014
    • NLM

      Hernandez E, Fernandes D, Wu J. Existence and uniqueness of solutions, well-posedness and global attractor for abstract differential equations with state-dependent delay [Internet]. Journal of Differential Equations. 2021 ; No 2021 753-806.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2021.09.014
    • Vancouver

      Hernandez E, Fernandes D, Wu J. Existence and uniqueness of solutions, well-posedness and global attractor for abstract differential equations with state-dependent delay [Internet]. Journal of Differential Equations. 2021 ; No 2021 753-806.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2021.09.014
  • Source: Journal of Differential Equations. Unidades: IME, ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARRIETA, José María e NAKASATO, Jean Carlos e PEREIRA, Marcone Corrêa. The p-Laplacian equation in thin domains: The unfolding approach. Journal of Differential Equations, v. 274, p. 1-34, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2020.12.004. Acesso em: 27 nov. 2025.
    • APA

      Arrieta, J. M., Nakasato, J. C., & Pereira, M. C. (2021). The p-Laplacian equation in thin domains: The unfolding approach. Journal of Differential Equations, 274, 1-34. doi:10.1016/j.jde.2020.12.004
    • NLM

      Arrieta JM, Nakasato JC, Pereira MC. The p-Laplacian equation in thin domains: The unfolding approach [Internet]. Journal of Differential Equations. 2021 ; 274 1-34.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2020.12.004
    • Vancouver

      Arrieta JM, Nakasato JC, Pereira MC. The p-Laplacian equation in thin domains: The unfolding approach [Internet]. Journal of Differential Equations. 2021 ; 274 1-34.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2020.12.004
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: ANÁLISE REAL, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, DINÂMICA TOPOLÓGICA, ESPAÇOS DE BANACH

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Fernanda Andrade da et al. Converse Lyapunov theorems for measure functional differential equations. Journal of Differential Equations, v. 286, p. 1-46, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.02.060. Acesso em: 27 nov. 2025.
    • APA

      Silva, F. A. da, Federson, M., Grau, R., & Toon, E. (2021). Converse Lyapunov theorems for measure functional differential equations. Journal of Differential Equations, 286, 1-46. doi:10.1016/j.jde.2021.02.060
    • NLM

      Silva FA da, Federson M, Grau R, Toon E. Converse Lyapunov theorems for measure functional differential equations [Internet]. Journal of Differential Equations. 2021 ; 286 1-46.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2021.02.060
    • Vancouver

      Silva FA da, Federson M, Grau R, Toon E. Converse Lyapunov theorems for measure functional differential equations [Internet]. Journal of Differential Equations. 2021 ; 286 1-46.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2021.02.060
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES, SISTEMAS DISSIPATIVO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CUI, Hongyong et al. Smoothing and finite-dimensionality of uniform attractors in Banach spaces. Journal of Differential Equations, v. 285, p. 383-428, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.03.013. Acesso em: 27 nov. 2025.
    • APA

      Cui, H., Carvalho, A. N. de, Cunha, A. C., & Langa, J. A. (2021). Smoothing and finite-dimensionality of uniform attractors in Banach spaces. Journal of Differential Equations, 285, 383-428. doi:10.1016/j.jde.2021.03.013
    • NLM

      Cui H, Carvalho AN de, Cunha AC, Langa JA. Smoothing and finite-dimensionality of uniform attractors in Banach spaces [Internet]. Journal of Differential Equations. 2021 ; 285 383-428.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2021.03.013
    • Vancouver

      Cui H, Carvalho AN de, Cunha AC, Langa JA. Smoothing and finite-dimensionality of uniform attractors in Banach spaces [Internet]. Journal of Differential Equations. 2021 ; 285 383-428.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2021.03.013
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DA ONDA, EQUAÇÕES DIFERENCIAIS PARCIAIS HIPERBÓLICAS, OBSERVABILIDADE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BURIOL, Celene et al. Asymptotic stability for a generalized nonlinear Klein-Gordon system. Journal of Differential Equations, v. 280, p. 517-545, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.01.011. Acesso em: 27 nov. 2025.
    • APA

      Buriol, C., Delatorre, L. G., Martinez, V. H. G., Soares, D. C., & Tavares, E. H. G. (2021). Asymptotic stability for a generalized nonlinear Klein-Gordon system. Journal of Differential Equations, 280, 517-545. doi:10.1016/j.jde.2021.01.011
    • NLM

      Buriol C, Delatorre LG, Martinez VHG, Soares DC, Tavares EHG. Asymptotic stability for a generalized nonlinear Klein-Gordon system [Internet]. Journal of Differential Equations. 2021 ; 280 517-545.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2021.01.011
    • Vancouver

      Buriol C, Delatorre LG, Martinez VHG, Soares DC, Tavares EHG. Asymptotic stability for a generalized nonlinear Klein-Gordon system [Internet]. Journal of Differential Equations. 2021 ; 280 517-545.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2021.01.011
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: DINÂMICA TOPOLÓGICA, ANÁLISE REAL, EQUAÇÕES DIFERENCIAIS NÃO LINEARES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e FEDERSON, Marcia e GADOTTI, Marta Cilene. Recursive properties of generalized ordinary differential equations and applications. Journal of Differential Equations, v. 303, p. 123-155, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.09.013. Acesso em: 27 nov. 2025.
    • APA

      Bonotto, E. de M., Federson, M., & Gadotti, M. C. (2021). Recursive properties of generalized ordinary differential equations and applications. Journal of Differential Equations, 303, 123-155. doi:10.1016/j.jde.2021.09.013
    • NLM

      Bonotto E de M, Federson M, Gadotti MC. Recursive properties of generalized ordinary differential equations and applications [Internet]. Journal of Differential Equations. 2021 ; 303 123-155.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2021.09.013
    • Vancouver

      Bonotto E de M, Federson M, Gadotti MC. Recursive properties of generalized ordinary differential equations and applications [Internet]. Journal of Differential Equations. 2021 ; 303 123-155.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2021.09.013

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025