Filtros : "Brazilian Journal of Probability and Statistics" "Iambartsev, Anatoli" Limpar

Filtros



Limitar por data


  • Fonte: Brazilian Journal of Probability and Statistics. Unidade: IME

    Assuntos: PROBABILIDADE, PROCESSOS ESTOCÁSTICOS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CERDA-HERNÁNDEZ, Jose Javier e IAMBARTSEV, Anatoli e ZOHREN, S. On the critical probability of percolation on random causal triangulations. Brazilian Journal of Probability and Statistics, v. 31, n. 2, p. 215-228, 2017Tradução . . Disponível em: https://doi.org/10.1214/16-bjps310. Acesso em: 12 nov. 2025.
    • APA

      Cerda-Hernández, J. J., Iambartsev, A., & Zohren, S. (2017). On the critical probability of percolation on random causal triangulations. Brazilian Journal of Probability and Statistics, 31( 2), 215-228. doi:10.1214/16-bjps310
    • NLM

      Cerda-Hernández JJ, Iambartsev A, Zohren S. On the critical probability of percolation on random causal triangulations [Internet]. Brazilian Journal of Probability and Statistics. 2017 ; 31( 2): 215-228.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1214/16-bjps310
    • Vancouver

      Cerda-Hernández JJ, Iambartsev A, Zohren S. On the critical probability of percolation on random causal triangulations [Internet]. Brazilian Journal of Probability and Statistics. 2017 ; 31( 2): 215-228.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1214/16-bjps310
  • Fonte: Brazilian Journal of Probability and Statistics. Unidade: IME

    Assuntos: MECÂNICA QUÂNTICA, MECÂNICA ESTATÍSTICA, PROCESSOS ESTOCÁSTICOS, GEOMETRIA DIFERENCIAL

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KELBERT, Mark e SUHOV, Yu. M e IAMBARTSEV, Anatoli. A Mermin–Wagner theorem on Lorentzian triangulations with quantum spins. Brazilian Journal of Probability and Statistics, v. 28, n. 4, p. 515-537, 2014Tradução . . Disponível em: https://doi.org/10.1214/13-BJPS222. Acesso em: 12 nov. 2025.
    • APA

      Kelbert, M., Suhov, Y. M., & Iambartsev, A. (2014). A Mermin–Wagner theorem on Lorentzian triangulations with quantum spins. Brazilian Journal of Probability and Statistics, 28( 4), 515-537. doi:10.1214/13-BJPS222
    • NLM

      Kelbert M, Suhov YM, Iambartsev A. A Mermin–Wagner theorem on Lorentzian triangulations with quantum spins [Internet]. Brazilian Journal of Probability and Statistics. 2014 ; 28( 4): 515-537.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1214/13-BJPS222
    • Vancouver

      Kelbert M, Suhov YM, Iambartsev A. A Mermin–Wagner theorem on Lorentzian triangulations with quantum spins [Internet]. Brazilian Journal of Probability and Statistics. 2014 ; 28( 4): 515-537.[citado 2025 nov. 12 ] Available from: https://doi.org/10.1214/13-BJPS222

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025