Filtros : "PROGRAMAÇÃO MATEMÁTICA" "Martínez, José Mário" Removido: "International Transactions in Operational Research" Limpar

Filtros



Limitar por data


  • Fonte: RAIRO - Operations Research. Unidade: IME

    Assuntos: ANÁLISE NUMÉRICA, PESQUISA OPERACIONAL, PROGRAMAÇÃO MATEMÁTICA

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg et al. Accelerated derivative-free spectral residual method for nonlinear systems of equations. RAIRO - Operations Research, v. 59, n. 1, p. 609-624, 2025Tradução . . Disponível em: https://doi.org/10.1051/ro/2024234. Acesso em: 07 nov. 2025.
    • APA

      Birgin, E. J. G., Gardenghi, J. L. C., Marcondes, D. M. S. V., & Martínez, J. M. (2025). Accelerated derivative-free spectral residual method for nonlinear systems of equations. RAIRO - Operations Research, 59( 1), 609-624. doi:10.1051/ro/2024234
    • NLM

      Birgin EJG, Gardenghi JLC, Marcondes DMSV, Martínez JM. Accelerated derivative-free spectral residual method for nonlinear systems of equations [Internet]. RAIRO - Operations Research. 2025 ; 59( 1): 609-624.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1051/ro/2024234
    • Vancouver

      Birgin EJG, Gardenghi JLC, Marcondes DMSV, Martínez JM. Accelerated derivative-free spectral residual method for nonlinear systems of equations [Internet]. RAIRO - Operations Research. 2025 ; 59( 1): 609-624.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1051/ro/2024234
  • Fonte: Abstracts. Nome do evento: Conference on Optimization - OP23. Unidade: IME

    Assuntos: PROGRAMAÇÃO NÃO LINEAR, MÉTODOS NUMÉRICOS, PROGRAMAÇÃO MATEMÁTICA

    PrivadoAcesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. Block coordinate descent for smooth nonconvex constrained minimization. 2023, Anais.. Philadelphia: SIAM, 2023. Disponível em: https://www.siam.org/Portals/0/Conferences/OP/OP23_ABSTRACTS.pdf. Acesso em: 07 nov. 2025.
    • APA

      Birgin, E. J. G., & Martínez, J. M. (2023). Block coordinate descent for smooth nonconvex constrained minimization. In Abstracts. Philadelphia: SIAM. Recuperado de https://www.siam.org/Portals/0/Conferences/OP/OP23_ABSTRACTS.pdf
    • NLM

      Birgin EJG, Martínez JM. Block coordinate descent for smooth nonconvex constrained minimization [Internet]. Abstracts. 2023 ;[citado 2025 nov. 07 ] Available from: https://www.siam.org/Portals/0/Conferences/OP/OP23_ABSTRACTS.pdf
    • Vancouver

      Birgin EJG, Martínez JM. Block coordinate descent for smooth nonconvex constrained minimization [Internet]. Abstracts. 2023 ;[citado 2025 nov. 07 ] Available from: https://www.siam.org/Portals/0/Conferences/OP/OP23_ABSTRACTS.pdf
  • Fonte: Computational Optimization and Applications. Unidade: IME

    Assuntos: PROGRAMAÇÃO NÃO LINEAR, MÉTODOS NUMÉRICOS, PROGRAMAÇÃO MATEMÁTICA

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. Block coordinate descent for smooth nonconvex constrained minimization. Computational Optimization and Applications, v. 83, p. 1-27, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10589-022-00389-5. Acesso em: 07 nov. 2025.
    • APA

      Birgin, E. J. G., & Martínez, J. M. (2022). Block coordinate descent for smooth nonconvex constrained minimization. Computational Optimization and Applications, 83, 1-27. doi:10.1007/s10589-022-00389-5
    • NLM

      Birgin EJG, Martínez JM. Block coordinate descent for smooth nonconvex constrained minimization [Internet]. Computational Optimization and Applications. 2022 ; 83 1-27.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10589-022-00389-5
    • Vancouver

      Birgin EJG, Martínez JM. Block coordinate descent for smooth nonconvex constrained minimization [Internet]. Computational Optimization and Applications. 2022 ; 83 1-27.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10589-022-00389-5
  • Fonte: TOP. Unidade: IME

    Assuntos: PROGRAMAÇÃO NÃO LINEAR, PROGRAMAÇÃO MATEMÁTICA

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg et al. On the solution of linearly constrained optimization problems by means of barrier algorithms. TOP, v. 29, n. 2, p. 417-441, 2021Tradução . . Disponível em: https://doi.org/10.1007/s11750-020-00559-w. Acesso em: 07 nov. 2025.
    • APA

      Birgin, E. J. G., Gardenghi, J. L. C., Martínez, J. M., & Santos, S. A. (2021). On the solution of linearly constrained optimization problems by means of barrier algorithms. TOP, 29( 2), 417-441. doi:10.1007/s11750-020-00559-w
    • NLM

      Birgin EJG, Gardenghi JLC, Martínez JM, Santos SA. On the solution of linearly constrained optimization problems by means of barrier algorithms [Internet]. TOP. 2021 ; 29( 2): 417-441.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s11750-020-00559-w
    • Vancouver

      Birgin EJG, Gardenghi JLC, Martínez JM, Santos SA. On the solution of linearly constrained optimization problems by means of barrier algorithms [Internet]. TOP. 2021 ; 29( 2): 417-441.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s11750-020-00559-w
  • Fonte: Optimization Methods and Software. Unidade: IME

    Assuntos: PROGRAMAÇÃO NÃO LINEAR, PROGRAMAÇÃO MATEMÁTICA, ANÁLISE DE ALGORITMOS

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. Complexity and performance of an Augmented Lagrangian algorithm. Optimization Methods and Software, v. 35, n. 5, p. 885-920, 2020Tradução . . Disponível em: https://doi.org/10.1080/10556788.2020.1746962. Acesso em: 07 nov. 2025.
    • APA

      Birgin, E. J. G., & Martínez, J. M. (2020). Complexity and performance of an Augmented Lagrangian algorithm. Optimization Methods and Software, 35( 5), 885-920. doi:10.1080/10556788.2020.1746962
    • NLM

      Birgin EJG, Martínez JM. Complexity and performance of an Augmented Lagrangian algorithm [Internet]. Optimization Methods and Software. 2020 ; 35( 5): 885-920.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1080/10556788.2020.1746962
    • Vancouver

      Birgin EJG, Martínez JM. Complexity and performance of an Augmented Lagrangian algorithm [Internet]. Optimization Methods and Software. 2020 ; 35( 5): 885-920.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1080/10556788.2020.1746962
  • Fonte: Mathematics of Computation. Unidade: IME

    Assuntos: PROGRAMAÇÃO MATEMÁTICA, MÉTODOS NUMÉRICOS DE OTIMIZAÇÃO, PROGRAMAÇÃO NÃO LINEAR

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e KREJIĆ, Nataša e MARTÍNEZ, José Mário. Iteration and evaluation complexity for the minimization of functions whose computation is intrinsically inexact. Mathematics of Computation, v. 89, p. 253-278, 2020Tradução . . Disponível em: https://doi.org/10.1090/mcom/3445. Acesso em: 07 nov. 2025.
    • APA

      Birgin, E. J. G., Krejić, N., & Martínez, J. M. (2020). Iteration and evaluation complexity for the minimization of functions whose computation is intrinsically inexact. Mathematics of Computation, 89, 253-278. doi:10.1090/mcom/3445
    • NLM

      Birgin EJG, Krejić N, Martínez JM. Iteration and evaluation complexity for the minimization of functions whose computation is intrinsically inexact [Internet]. Mathematics of Computation. 2020 ; 89 253-278.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1090/mcom/3445
    • Vancouver

      Birgin EJG, Krejić N, Martínez JM. Iteration and evaluation complexity for the minimization of functions whose computation is intrinsically inexact [Internet]. Mathematics of Computation. 2020 ; 89 253-278.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1090/mcom/3445
  • Fonte: Conference book. Nome do evento: International Conference on Continuous Optimization - ICCOPT. Unidade: IME

    Assuntos: OTIMIZAÇÃO MATEMÁTICA, PROGRAMAÇÃO MATEMÁTICA

    Versão PublicadaAcesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. A Newton-like method with mixed factorizations and cubic regularization and its usage in an Augmented Lagrangian framework. 2019, Anais.. Berlin: Weierstrass Institute for Applied Analysis and Stochastics (WIAS), 2019. Disponível em: https://www.iccopt2019.berlin/downloads/ICCOPT2019_Conference_Book.pdf. Acesso em: 07 nov. 2025.
    • APA

      Birgin, E. J. G., & Martínez, J. M. (2019). A Newton-like method with mixed factorizations and cubic regularization and its usage in an Augmented Lagrangian framework. In Conference book. Berlin: Weierstrass Institute for Applied Analysis and Stochastics (WIAS). Recuperado de https://www.iccopt2019.berlin/downloads/ICCOPT2019_Conference_Book.pdf
    • NLM

      Birgin EJG, Martínez JM. A Newton-like method with mixed factorizations and cubic regularization and its usage in an Augmented Lagrangian framework [Internet]. Conference book. 2019 ;[citado 2025 nov. 07 ] Available from: https://www.iccopt2019.berlin/downloads/ICCOPT2019_Conference_Book.pdf
    • Vancouver

      Birgin EJG, Martínez JM. A Newton-like method with mixed factorizations and cubic regularization and its usage in an Augmented Lagrangian framework [Internet]. Conference book. 2019 ;[citado 2025 nov. 07 ] Available from: https://www.iccopt2019.berlin/downloads/ICCOPT2019_Conference_Book.pdf
  • Fonte: Program & abstracts book. Nome do evento: International Congress on Industrial and Applied Mathematics - ICIAM. Unidade: IME

    Assuntos: OTIMIZAÇÃO MATEMÁTICA, PROGRAMAÇÃO MATEMÁTICA

    Versão PublicadaAcesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. A Newton-like method with mixed factorizations and cubic regularization for unconstrained minimization. 2019, Anais.. Madrid: Sociedad Española de Matemática Aplicada (SeMA), 2019. Disponível em: https://iciam2019.org/images/site/news/ICIAM2019_PROGRAM_ABSTRACTS_BOOK.pdf. Acesso em: 07 nov. 2025.
    • APA

      Birgin, E. J. G., & Martínez, J. M. (2019). A Newton-like method with mixed factorizations and cubic regularization for unconstrained minimization. In Program & abstracts book. Madrid: Sociedad Española de Matemática Aplicada (SeMA). Recuperado de https://iciam2019.org/images/site/news/ICIAM2019_PROGRAM_ABSTRACTS_BOOK.pdf
    • NLM

      Birgin EJG, Martínez JM. A Newton-like method with mixed factorizations and cubic regularization for unconstrained minimization [Internet]. Program & abstracts book. 2019 ;[citado 2025 nov. 07 ] Available from: https://iciam2019.org/images/site/news/ICIAM2019_PROGRAM_ABSTRACTS_BOOK.pdf
    • Vancouver

      Birgin EJG, Martínez JM. A Newton-like method with mixed factorizations and cubic regularization for unconstrained minimization [Internet]. Program & abstracts book. 2019 ;[citado 2025 nov. 07 ] Available from: https://iciam2019.org/images/site/news/ICIAM2019_PROGRAM_ABSTRACTS_BOOK.pdf
  • Fonte: IMA Journal of Numerical Analysis. Unidade: IME

    Assunto: PROGRAMAÇÃO MATEMÁTICA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. Spectral projected gradient and variable metric methods for optimization with linear inequalities. IMA Journal of Numerical Analysis, v. 25, n. 2, p. 221-252, 2005Tradução . . Disponível em: https://doi.org/10.1093/imanum/drh020. Acesso em: 07 nov. 2025.
    • APA

      Andreani, R., Birgin, E. J. G., Martínez, J. M., & Yuan, J. Y. (2005). Spectral projected gradient and variable metric methods for optimization with linear inequalities. IMA Journal of Numerical Analysis, 25( 2), 221-252. doi:10.1093/imanum/drh020
    • NLM

      Andreani R, Birgin EJG, Martínez JM, Yuan JY. Spectral projected gradient and variable metric methods for optimization with linear inequalities [Internet]. IMA Journal of Numerical Analysis. 2005 ; 25( 2): 221-252.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1093/imanum/drh020
    • Vancouver

      Andreani R, Birgin EJG, Martínez JM, Yuan JY. Spectral projected gradient and variable metric methods for optimization with linear inequalities [Internet]. IMA Journal of Numerical Analysis. 2005 ; 25( 2): 221-252.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1093/imanum/drh020
  • Fonte: Topics in numerical analysis : with special emphasis on nonlinear problems. Unidade: IME

    Assunto: PROGRAMAÇÃO MATEMÁTICA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. A box-constrained optimization algorithm with negative curvature directions and spectral projected gradients. Topics in numerical analysis : with special emphasis on nonlinear problems. Tradução . Vienna: Springer, 2001. . Disponível em: https://doi.org/10.1007/978-3-7091-6217-0_5. Acesso em: 07 nov. 2025.
    • APA

      Birgin, E. J. G., & Martínez, J. M. (2001). A box-constrained optimization algorithm with negative curvature directions and spectral projected gradients. In Topics in numerical analysis : with special emphasis on nonlinear problems. Vienna: Springer. doi:10.1007/978-3-7091-6217-0_5
    • NLM

      Birgin EJG, Martínez JM. A box-constrained optimization algorithm with negative curvature directions and spectral projected gradients [Internet]. In: Topics in numerical analysis : with special emphasis on nonlinear problems. Vienna: Springer; 2001. [citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/978-3-7091-6217-0_5
    • Vancouver

      Birgin EJG, Martínez JM. A box-constrained optimization algorithm with negative curvature directions and spectral projected gradients [Internet]. In: Topics in numerical analysis : with special emphasis on nonlinear problems. Vienna: Springer; 2001. [citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/978-3-7091-6217-0_5

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025