Filtros : "Indexado no ISI Web of Knowledge" "GEODÉSIA GEOMÉTRICA" Removido: "IEEE Transactions on Reliability" Limpar

Filtros



Refine with date range


  • Source: Archive for Rational Mechanics and Analysis. Unidade: IME

    Assunto: GEODÉSIA GEOMÉTRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIAMBÓ, Roberto e GIANNONI, Fabio e PICCIONE, Paolo. Multiple brake orbits and homoclinics in Riemannian manifolds. Archive for Rational Mechanics and Analysis, v. 200, n. 2, p. 691-724, 2011Tradução . . Disponível em: https://doi.org/10.1007/s00205-010-0371-1. Acesso em: 05 dez. 2025.
    • APA

      Giambó, R., Giannoni, F., & Piccione, P. (2011). Multiple brake orbits and homoclinics in Riemannian manifolds. Archive for Rational Mechanics and Analysis, 200( 2), 691-724. doi:10.1007/s00205-010-0371-1
    • NLM

      Giambó R, Giannoni F, Piccione P. Multiple brake orbits and homoclinics in Riemannian manifolds [Internet]. Archive for Rational Mechanics and Analysis. 2011 ; 200( 2): 691-724.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00205-010-0371-1
    • Vancouver

      Giambó R, Giannoni F, Piccione P. Multiple brake orbits and homoclinics in Riemannian manifolds [Internet]. Archive for Rational Mechanics and Analysis. 2011 ; 200( 2): 691-724.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00205-010-0371-1
  • Source: Mathematische Zeitschrift. Unidade: IME

    Assunto: GEODÉSIA GEOMÉTRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FLORES, Jose Luis e JAVALOYES, Miguel Angel e PICCIONE, Paolo. Periodic geodesics and geometry of compact Lorentzian manifolds with a Killing vector field. Mathematische Zeitschrift, v. 267, n. 1-2, p. 221-233, 2011Tradução . . Disponível em: https://doi.org/10.1007/s00209-009-0617-5. Acesso em: 05 dez. 2025.
    • APA

      Flores, J. L., Javaloyes, M. A., & Piccione, P. (2011). Periodic geodesics and geometry of compact Lorentzian manifolds with a Killing vector field. Mathematische Zeitschrift, 267( 1-2), 221-233. doi:10.1007/s00209-009-0617-5
    • NLM

      Flores JL, Javaloyes MA, Piccione P. Periodic geodesics and geometry of compact Lorentzian manifolds with a Killing vector field [Internet]. Mathematische Zeitschrift. 2011 ; 267( 1-2): 221-233.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00209-009-0617-5
    • Vancouver

      Flores JL, Javaloyes MA, Piccione P. Periodic geodesics and geometry of compact Lorentzian manifolds with a Killing vector field [Internet]. Mathematische Zeitschrift. 2011 ; 267( 1-2): 221-233.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00209-009-0617-5
  • Source: Communications in Analysis and Geometry. Unidade: IME

    Assunto: GEODÉSIA GEOMÉTRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BILIOTTI, Leonardo e MERCURI, Francesco e PICCIONE, Paolo. On a Gromoll-Meyer type theorem in globally hyperbolic stationary spacetimes. Communications in Analysis and Geometry, v. 16, n. 2, p. 333-393, 2008Tradução . . Disponível em: https://doi.org/10.4310/CAG.2008.v16.n2.a3. Acesso em: 05 dez. 2025.
    • APA

      Biliotti, L., Mercuri, F., & Piccione, P. (2008). On a Gromoll-Meyer type theorem in globally hyperbolic stationary spacetimes. Communications in Analysis and Geometry, 16( 2), 333-393. doi:10.4310/CAG.2008.v16.n2.a3
    • NLM

      Biliotti L, Mercuri F, Piccione P. On a Gromoll-Meyer type theorem in globally hyperbolic stationary spacetimes [Internet]. Communications in Analysis and Geometry. 2008 ; 16( 2): 333-393.[citado 2025 dez. 05 ] Available from: https://doi.org/10.4310/CAG.2008.v16.n2.a3
    • Vancouver

      Biliotti L, Mercuri F, Piccione P. On a Gromoll-Meyer type theorem in globally hyperbolic stationary spacetimes [Internet]. Communications in Analysis and Geometry. 2008 ; 16( 2): 333-393.[citado 2025 dez. 05 ] Available from: https://doi.org/10.4310/CAG.2008.v16.n2.a3
  • Source: Mathematische Zeitschrift. Unidade: IME

    Assunto: GEODÉSIA GEOMÉTRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JAVALOYES, Miguel Angel e LIMA, Levi Lopes de e PICCIONE, Paolo. Iteration of closed geodesics in stationary Lorentzian manifolds. Mathematische Zeitschrift, v. 260, n. 2, p. 277-303, 2008Tradução . . Disponível em: https://doi.org/10.1007/s00209-007-0274-5. Acesso em: 05 dez. 2025.
    • APA

      Javaloyes, M. A., Lima, L. L. de, & Piccione, P. (2008). Iteration of closed geodesics in stationary Lorentzian manifolds. Mathematische Zeitschrift, 260( 2), 277-303. doi:10.1007/s00209-007-0274-5
    • NLM

      Javaloyes MA, Lima LL de, Piccione P. Iteration of closed geodesics in stationary Lorentzian manifolds [Internet]. Mathematische Zeitschrift. 2008 ; 260( 2): 277-303.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00209-007-0274-5
    • Vancouver

      Javaloyes MA, Lima LL de, Piccione P. Iteration of closed geodesics in stationary Lorentzian manifolds [Internet]. Mathematische Zeitschrift. 2008 ; 260( 2): 277-303.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00209-007-0274-5

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025