Filtros : "PROGRAMAÇÃO MATEMÁTICA" "Financiado pela FAPESP" Removido: "IME-MAC" Limpar

Filtros



Refine with date range


  • Source: Computational Optimization and Applications. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, PROGRAMAÇÃO MATEMÁTICA, MÉTODOS NUMÉRICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming. Computational Optimization and Applications, v. 79, p. 633-648, 2021Tradução . . Disponível em: https://doi.org/10.1007/s10589-021-00281-8. Acesso em: 05 dez. 2025.
    • APA

      Andreani, R., Fukuda, E. H., Haeser, G., Santos, D. O., & Secchin, L. D. (2021). On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming. Computational Optimization and Applications, 79, 633-648. doi:10.1007/s10589-021-00281-8
    • NLM

      Andreani R, Fukuda EH, Haeser G, Santos DO, Secchin LD. On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming [Internet]. Computational Optimization and Applications. 2021 ; 79 633-648.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s10589-021-00281-8
    • Vancouver

      Andreani R, Fukuda EH, Haeser G, Santos DO, Secchin LD. On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming [Internet]. Computational Optimization and Applications. 2021 ; 79 633-648.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s10589-021-00281-8
  • Source: Journal of Optimization Theory and Applications. Unidade: ICMC

    Subjects: EQUILÍBRIO, PROGRAMAÇÃO MATEMÁTICA, OTIMIZAÇÃO RESTRITA, PROGRAMAÇÃO NÃO LINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HELOU, Elias Salomão e SANTOS, Sandra Augusta e SIMÕES, Lucas Eduardo Azevedo. Analysis of a new sequential optimality condition applied to mathematical programs with equilibrium constraints. Journal of Optimization Theory and Applications, v. 185, p. 433-447, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10957-020-01658-1. Acesso em: 05 dez. 2025.
    • APA

      Helou, E. S., Santos, S. A., & Simões, L. E. A. (2020). Analysis of a new sequential optimality condition applied to mathematical programs with equilibrium constraints. Journal of Optimization Theory and Applications, 185, 433-447. doi:10.1007/s10957-020-01658-1
    • NLM

      Helou ES, Santos SA, Simões LEA. Analysis of a new sequential optimality condition applied to mathematical programs with equilibrium constraints [Internet]. Journal of Optimization Theory and Applications. 2020 ; 185 433-447.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s10957-020-01658-1
    • Vancouver

      Helou ES, Santos SA, Simões LEA. Analysis of a new sequential optimality condition applied to mathematical programs with equilibrium constraints [Internet]. Journal of Optimization Theory and Applications. 2020 ; 185 433-447.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s10957-020-01658-1
  • Source: SIAM Journal on Optimization. Unidade: ICMC

    Subjects: ALGORITMOS ÚTEIS E ESPECÍFICOS, OTIMIZAÇÃO GLOBAL, PROGRAMAÇÃO MATEMÁTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HELOU, Elias Salomão e SANTOS, Sandra Augusta e SIMÕES, Lucas Eduardo Azevedo. A new sequential optimality condition for constrained nonsmooth optimization. SIAM Journal on Optimization, v. 30, n. 2, p. 1610-1637, 2020Tradução . . Disponível em: https://doi.org/10.1137/18M1228608. Acesso em: 05 dez. 2025.
    • APA

      Helou, E. S., Santos, S. A., & Simões, L. E. A. (2020). A new sequential optimality condition for constrained nonsmooth optimization. SIAM Journal on Optimization, 30( 2), 1610-1637. doi:10.1137/18M1228608
    • NLM

      Helou ES, Santos SA, Simões LEA. A new sequential optimality condition for constrained nonsmooth optimization [Internet]. SIAM Journal on Optimization. 2020 ; 30( 2): 1610-1637.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1137/18M1228608
    • Vancouver

      Helou ES, Santos SA, Simões LEA. A new sequential optimality condition for constrained nonsmooth optimization [Internet]. SIAM Journal on Optimization. 2020 ; 30( 2): 1610-1637.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1137/18M1228608
  • Source: Computational Optimization and Applications. Conference titles: Brazilian Workshop on Continuous Optimization. Unidade: IME

    Assunto: PROGRAMAÇÃO MATEMÁTICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BUENO, L. F et al. An Augmented Lagrangian method for quasi-equilibrium problems. Computational Optimization and Applications. New York: Instituto de Matemática e Estatística, Universidade de São Paulo. Disponível em: https://doi.org/10.1007/s10589-020-00180-4. Acesso em: 05 dez. 2025. , 2020
    • APA

      Bueno, L. F., Haeser, G., Lara, F., & Rojas, F. N. (2020). An Augmented Lagrangian method for quasi-equilibrium problems. Computational Optimization and Applications. New York: Instituto de Matemática e Estatística, Universidade de São Paulo. doi:10.1007/s10589-020-00180-4
    • NLM

      Bueno LF, Haeser G, Lara F, Rojas FN. An Augmented Lagrangian method for quasi-equilibrium problems [Internet]. Computational Optimization and Applications. 2020 ; 76( 3): 737-766.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s10589-020-00180-4
    • Vancouver

      Bueno LF, Haeser G, Lara F, Rojas FN. An Augmented Lagrangian method for quasi-equilibrium problems [Internet]. Computational Optimization and Applications. 2020 ; 76( 3): 737-766.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s10589-020-00180-4
  • Source: Journal of Optimization Theory and Applications. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, PROGRAMAÇÃO MATEMÁTICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAESER, Gabriel e RAMOS, A. New constraint qualifications with second-order properties in nonlinear optimization. Journal of Optimization Theory and Applications, v. 184, p. 494-506, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10957-019-01603-x. Acesso em: 05 dez. 2025.
    • APA

      Haeser, G., & Ramos, A. (2020). New constraint qualifications with second-order properties in nonlinear optimization. Journal of Optimization Theory and Applications, 184, 494-506. doi:10.1007/s10957-019-01603-x
    • NLM

      Haeser G, Ramos A. New constraint qualifications with second-order properties in nonlinear optimization [Internet]. Journal of Optimization Theory and Applications. 2020 ; 184 494-506.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s10957-019-01603-x
    • Vancouver

      Haeser G, Ramos A. New constraint qualifications with second-order properties in nonlinear optimization [Internet]. Journal of Optimization Theory and Applications. 2020 ; 184 494-506.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s10957-019-01603-x
  • Source: Computational Optimization and Applications. Conference titles: Brazilian Workshop on Continuous Optimization. Unidade: IME

    Assunto: PROGRAMAÇÃO MATEMÁTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BUENO, Luís Felipe e HAESER, Gabriel e SANTOS, Luiz-Rafael. Towards an efficient augmented Lagrangian method for convex quadratic programming. Computational Optimization and Applications. New York: Instituto de Matemática e Estatística, Universidade de São Paulo. Disponível em: https://doi.org/10.1007/s10589-019-00161-2. Acesso em: 05 dez. 2025. , 2020
    • APA

      Bueno, L. F., Haeser, G., & Santos, L. -R. (2020). Towards an efficient augmented Lagrangian method for convex quadratic programming. Computational Optimization and Applications. New York: Instituto de Matemática e Estatística, Universidade de São Paulo. doi:10.1007/s10589-019-00161-2
    • NLM

      Bueno LF, Haeser G, Santos L-R. Towards an efficient augmented Lagrangian method for convex quadratic programming [Internet]. Computational Optimization and Applications. 2020 ; 76( 3): 767-800.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s10589-019-00161-2
    • Vancouver

      Bueno LF, Haeser G, Santos L-R. Towards an efficient augmented Lagrangian method for convex quadratic programming [Internet]. Computational Optimization and Applications. 2020 ; 76( 3): 767-800.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s10589-019-00161-2
  • Source: Mathematical Programming. Unidade: IME

    Subjects: PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO NÃO LINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto e HAESER, Gabriel e VIANA, Daiana S. Optimality conditions and global convergence for nonlinear semidefinite programming. Mathematical Programming, v. 180, n. 1-2, p. 203-235, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10107-018-1354-5. Acesso em: 05 dez. 2025.
    • APA

      Andreani, R., Haeser, G., & Viana, D. S. (2020). Optimality conditions and global convergence for nonlinear semidefinite programming. Mathematical Programming, 180( 1-2), 203-235. doi:10.1007/s10107-018-1354-5
    • NLM

      Andreani R, Haeser G, Viana DS. Optimality conditions and global convergence for nonlinear semidefinite programming [Internet]. Mathematical Programming. 2020 ; 180( 1-2): 203-235.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s10107-018-1354-5
    • Vancouver

      Andreani R, Haeser G, Viana DS. Optimality conditions and global convergence for nonlinear semidefinite programming [Internet]. Mathematical Programming. 2020 ; 180( 1-2): 203-235.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s10107-018-1354-5
  • Source: SIAM Journal on Optimization. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, TEOREMA DE EXISTÊNCIA, PROGRAMAÇÃO MATEMÁTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. New sequential optimality conditions for mathematical programs with complementarity constraints and algorithmic consequences. SIAM Journal on Optimization, v. 29, n. 4, p. 3201-3230, 2019Tradução . . Disponível em: https://doi.org/10.1137/18M121040X. Acesso em: 05 dez. 2025.
    • APA

      Andreani, R., Haeser, G., Secchin, L. D., & Silva, P. J. S. (2019). New sequential optimality conditions for mathematical programs with complementarity constraints and algorithmic consequences. SIAM Journal on Optimization, 29( 4), 3201-3230. doi:10.1137/18M121040X
    • NLM

      Andreani R, Haeser G, Secchin LD, Silva PJS. New sequential optimality conditions for mathematical programs with complementarity constraints and algorithmic consequences [Internet]. SIAM Journal on Optimization. 2019 ; 29( 4): 3201-3230.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1137/18M121040X
    • Vancouver

      Andreani R, Haeser G, Secchin LD, Silva PJS. New sequential optimality conditions for mathematical programs with complementarity constraints and algorithmic consequences [Internet]. SIAM Journal on Optimization. 2019 ; 29( 4): 3201-3230.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1137/18M121040X
  • Source: Annals of Operations Research. Unidade: EP

    Subjects: PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO LINEAR, PROGRAMAÇÃO POR RESTRIÇÕES, OTIMIZAÇÃO COMBINATÓRIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NASCIMENTO, Oliviana Xavier do e QUEIROZ, Thiago Alves de e JUNQUEIRA, Leonardo. A MIP-CP based approach for two- and three-dimensional cutting problems with staged guillotine cuts. Annals of Operations Research, v. 20 No 2019, p. 31 on-line, 2019Tradução . . Disponível em: https://doi.org/10.1007/s10479-019-03466-x. Acesso em: 05 dez. 2025.
    • APA

      Nascimento, O. X. do, Queiroz, T. A. de, & Junqueira, L. (2019). A MIP-CP based approach for two- and three-dimensional cutting problems with staged guillotine cuts. Annals of Operations Research, 20 No 2019, 31 on-line. doi:10.1007/s10479-019-03466-x
    • NLM

      Nascimento OX do, Queiroz TA de, Junqueira L. A MIP-CP based approach for two- and three-dimensional cutting problems with staged guillotine cuts [Internet]. Annals of Operations Research. 2019 ; 20 No 201931 on-line.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s10479-019-03466-x
    • Vancouver

      Nascimento OX do, Queiroz TA de, Junqueira L. A MIP-CP based approach for two- and three-dimensional cutting problems with staged guillotine cuts [Internet]. Annals of Operations Research. 2019 ; 20 No 201931 on-line.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s10479-019-03466-x
  • Source: Mathematical Programming. Unidade: IME

    Subjects: PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO NÃO LINEAR

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAESER, Gabriel e LIU, Hongcheng e YE, Yinyu. Optimality condition and complexity analysis for linearly-constrained optimization without differentiability on the boundary. Mathematical Programming, v. 178, n. 1-2, p. 263-299, 2019Tradução . . Disponível em: https://doi.org/10.1007/s10107-018-1290-4. Acesso em: 05 dez. 2025.
    • APA

      Haeser, G., Liu, H., & Ye, Y. (2019). Optimality condition and complexity analysis for linearly-constrained optimization without differentiability on the boundary. Mathematical Programming, 178( 1-2), 263-299. doi:10.1007/s10107-018-1290-4
    • NLM

      Haeser G, Liu H, Ye Y. Optimality condition and complexity analysis for linearly-constrained optimization without differentiability on the boundary [Internet]. Mathematical Programming. 2019 ; 178( 1-2): 263-299.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s10107-018-1290-4
    • Vancouver

      Haeser G, Liu H, Ye Y. Optimality condition and complexity analysis for linearly-constrained optimization without differentiability on the boundary [Internet]. Mathematical Programming. 2019 ; 178( 1-2): 263-299.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s10107-018-1290-4
  • Source: Journal of Optimization Theory and Applications. Unidade: IME

    Subjects: PESQUISA OPERACIONAL, PROGRAMAÇÃO MATEMÁTICA, ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR, PROGRAMAÇÃO NÃO LINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEHLING, Roger et al. On a conjecture in second-order optimality conditions. Journal of Optimization Theory and Applications, v. 176, n. 3, p. 625-633, 2018Tradução . . Disponível em: https://doi.org/10.1007/s10957-018-1229-1. Acesso em: 05 dez. 2025.
    • APA

      Behling, R., Haeser, G., Ramos, A., & Viana, D. S. (2018). On a conjecture in second-order optimality conditions. Journal of Optimization Theory and Applications, 176( 3), 625-633. doi:10.1007/s10957-018-1229-1
    • NLM

      Behling R, Haeser G, Ramos A, Viana DS. On a conjecture in second-order optimality conditions [Internet]. Journal of Optimization Theory and Applications. 2018 ; 176( 3): 625-633.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s10957-018-1229-1
    • Vancouver

      Behling R, Haeser G, Ramos A, Viana DS. On a conjecture in second-order optimality conditions [Internet]. Journal of Optimization Theory and Applications. 2018 ; 176( 3): 625-633.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s10957-018-1229-1
  • Source: Computational Optimization and Applications. Unidade: IME

    Subjects: PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO NÃO LINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAESER, Gabriel. A second-order optimality condition with first- and second-order complementarity associated with global convergence of algorithms. Computational Optimization and Applications, v. 70, n. 2, p. 615–639, 2018Tradução . . Disponível em: https://doi.org/10.1007/s10589-018-0005-3. Acesso em: 05 dez. 2025.
    • APA

      Haeser, G. (2018). A second-order optimality condition with first- and second-order complementarity associated with global convergence of algorithms. Computational Optimization and Applications, 70( 2), 615–639. doi:10.1007/s10589-018-0005-3
    • NLM

      Haeser G. A second-order optimality condition with first- and second-order complementarity associated with global convergence of algorithms [Internet]. Computational Optimization and Applications. 2018 ; 70( 2): 615–639.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s10589-018-0005-3
    • Vancouver

      Haeser G. A second-order optimality condition with first- and second-order complementarity associated with global convergence of algorithms [Internet]. Computational Optimization and Applications. 2018 ; 70( 2): 615–639.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s10589-018-0005-3
  • Source: Journal of Optimization Theory and Applications. Unidade: IME

    Subjects: PESQUISA OPERACIONAL, PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO NÃO LINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAESER, Gabriel. An extension of Yuan's lemma and its applications in optimization. Journal of Optimization Theory and Applications, v. 174, n. 3, p. 641-649, 2017Tradução . . Disponível em: https://doi.org/10.1007/s10957-017-1123-2. Acesso em: 05 dez. 2025.
    • APA

      Haeser, G. (2017). An extension of Yuan's lemma and its applications in optimization. Journal of Optimization Theory and Applications, 174( 3), 641-649. doi:10.1007/s10957-017-1123-2
    • NLM

      Haeser G. An extension of Yuan's lemma and its applications in optimization [Internet]. Journal of Optimization Theory and Applications. 2017 ; 174( 3): 641-649.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s10957-017-1123-2
    • Vancouver

      Haeser G. An extension of Yuan's lemma and its applications in optimization [Internet]. Journal of Optimization Theory and Applications. 2017 ; 174( 3): 641-649.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s10957-017-1123-2

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025