Filtros : "Nonlinear Analysis" "IME-MAT" Limpar

Filtros



Refine with date range


  • Source: Nonlinear Analysis. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDRADE, João Henrique e WEI, Juncheng. Asymptotics for positive singular solutions to subcritical sixth order equations. Nonlinear Analysis, v. 255, n. artigo 113757, p. 1-28, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.na.2025.113757. Acesso em: 11 nov. 2025.
    • APA

      Andrade, J. H., & Wei, J. (2025). Asymptotics for positive singular solutions to subcritical sixth order equations. Nonlinear Analysis, 255( artigo 113757), 1-28. doi:10.1016/j.na.2025.113757
    • NLM

      Andrade JH, Wei J. Asymptotics for positive singular solutions to subcritical sixth order equations [Internet]. Nonlinear Analysis. 2025 ; 255( artigo 113757): 1-28.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.na.2025.113757
    • Vancouver

      Andrade JH, Wei J. Asymptotics for positive singular solutions to subcritical sixth order equations [Internet]. Nonlinear Analysis. 2025 ; 255( artigo 113757): 1-28.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.na.2025.113757
  • Source: Nonlinear Analysis. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ANÁLISE GLOBAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENCI, Vieri et al. Corrigendum to: Lusternik-Schnirelman and Morse Theory for the Van der Waals-Cahn-Hilliard equation with volume constraint [Nonlinear Analysis 220 (2022) 112851]. Nonlinear Analysis, v. 238, p. 1-9, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.na.2023.113389. Acesso em: 11 nov. 2025.
    • APA

      Benci, V., Nardulli, S., Acevedo, L. E. O., & Piccione, P. (2024). Corrigendum to: Lusternik-Schnirelman and Morse Theory for the Van der Waals-Cahn-Hilliard equation with volume constraint [Nonlinear Analysis 220 (2022) 112851]. Nonlinear Analysis, 238, 1-9. doi:10.1016/j.na.2023.113389
    • NLM

      Benci V, Nardulli S, Acevedo LEO, Piccione P. Corrigendum to: Lusternik-Schnirelman and Morse Theory for the Van der Waals-Cahn-Hilliard equation with volume constraint [Nonlinear Analysis 220 (2022) 112851] [Internet]. Nonlinear Analysis. 2024 ; 238 1-9.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.na.2023.113389
    • Vancouver

      Benci V, Nardulli S, Acevedo LEO, Piccione P. Corrigendum to: Lusternik-Schnirelman and Morse Theory for the Van der Waals-Cahn-Hilliard equation with volume constraint [Nonlinear Analysis 220 (2022) 112851] [Internet]. Nonlinear Analysis. 2024 ; 238 1-9.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.na.2023.113389
  • Source: Nonlinear Analysis. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ANÁLISE GLOBAL

    PrivadoAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENCI, Vieri et al. Lusternik-Schnirelman and Morse Theory for the Van der Waals-Cahn-Hilliard equation with volume constraint. Nonlinear Analysis, v. 220, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.na.2022.112851. Acesso em: 11 nov. 2025.
    • APA

      Benci, V., Nardulli, S., Acevedo, L. E. O., & Piccione, P. (2022). Lusternik-Schnirelman and Morse Theory for the Van der Waals-Cahn-Hilliard equation with volume constraint. Nonlinear Analysis, 220. doi:10.1016/j.na.2022.112851
    • NLM

      Benci V, Nardulli S, Acevedo LEO, Piccione P. Lusternik-Schnirelman and Morse Theory for the Van der Waals-Cahn-Hilliard equation with volume constraint [Internet]. Nonlinear Analysis. 2022 ; 220[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.na.2022.112851
    • Vancouver

      Benci V, Nardulli S, Acevedo LEO, Piccione P. Lusternik-Schnirelman and Morse Theory for the Van der Waals-Cahn-Hilliard equation with volume constraint [Internet]. Nonlinear Analysis. 2022 ; 220[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.na.2022.112851
  • Source: Nonlinear Analysis. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CELY, Liliana e GOLOSHCHAPOVA, Nataliia. Variational and stability properties of coupled NLS equations on the star graph. Nonlinear Analysis, v. 224, n. artigo 113056, p. 1-35, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.na.2022.113056. Acesso em: 11 nov. 2025.
    • APA

      Cely, L., & Goloshchapova, N. (2022). Variational and stability properties of coupled NLS equations on the star graph. Nonlinear Analysis, 224( artigo 113056), 1-35. doi:10.1016/j.na.2022.113056
    • NLM

      Cely L, Goloshchapova N. Variational and stability properties of coupled NLS equations on the star graph [Internet]. Nonlinear Analysis. 2022 ; 224( artigo 113056): 1-35.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.na.2022.113056
    • Vancouver

      Cely L, Goloshchapova N. Variational and stability properties of coupled NLS equations on the star graph [Internet]. Nonlinear Analysis. 2022 ; 224( artigo 113056): 1-35.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.na.2022.113056
  • Source: Nonlinear Analysis. Unidade: IME

    Subjects: GEOMETRIA DIFERENCIAL, FUNÇÕES DE UMA VARIÁVEL COMPLEXA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DUSSAN, Martha P e FRANCO FILHO, Antonio de Padua e SIMÕES, P. Spacelike Surfaces in L4 with null mean curvature vector and the nonlinear Riccati partial differential equation. Nonlinear Analysis, v. 207, n. art. 112271, p. 1-19, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.na.2021.112271. Acesso em: 11 nov. 2025.
    • APA

      Dussan, M. P., Franco Filho, A. de P., & Simões, P. (2021). Spacelike Surfaces in L4 with null mean curvature vector and the nonlinear Riccati partial differential equation. Nonlinear Analysis, 207( art. 112271), 1-19. doi:10.1016/j.na.2021.112271
    • NLM

      Dussan MP, Franco Filho A de P, Simões P. Spacelike Surfaces in L4 with null mean curvature vector and the nonlinear Riccati partial differential equation [Internet]. Nonlinear Analysis. 2021 ; 207( art. 112271): 1-19.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.na.2021.112271
    • Vancouver

      Dussan MP, Franco Filho A de P, Simões P. Spacelike Surfaces in L4 with null mean curvature vector and the nonlinear Riccati partial differential equation [Internet]. Nonlinear Analysis. 2021 ; 207( art. 112271): 1-19.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.na.2021.112271
  • Source: Nonlinear Analysis. Unidade: IME

    Subjects: EQUAÇÃO DE SCHRODINGER, SISTEMAS HAMILTONIANOS, OPERADORES DIFERENCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLOSHCHAPOVA, Nataliia e OHTA, Masahito. Blow-up and strong instability of standing waves for the NLS-δ equation on a star graph. Nonlinear Analysis, v. 196, p. 1-23, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.na.2020.111753. Acesso em: 11 nov. 2025.
    • APA

      Goloshchapova, N., & Ohta, M. (2020). Blow-up and strong instability of standing waves for the NLS-δ equation on a star graph. Nonlinear Analysis, 196, 1-23. doi:10.1016/j.na.2020.111753
    • NLM

      Goloshchapova N, Ohta M. Blow-up and strong instability of standing waves for the NLS-δ equation on a star graph [Internet]. Nonlinear Analysis. 2020 ; 196 1-23.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.na.2020.111753
    • Vancouver

      Goloshchapova N, Ohta M. Blow-up and strong instability of standing waves for the NLS-δ equation on a star graph [Internet]. Nonlinear Analysis. 2020 ; 196 1-23.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.na.2020.111753
  • Source: Nonlinear Analysis. Unidade: IME

    Subjects: RELATIVIDADE (GEOMETRIA DIFERENCIAL), GEODÉSIA, GEOMETRIA DIFERENCIAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIAMBÓ, Roberto e GIANNONI, Fábio e PICCIONE, Paolo. A finite dimensional approach to light rays in general relativity. Nonlinear Analysis, v. 168, p. 198-221, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.na.2017.11.014. Acesso em: 11 nov. 2025.
    • APA

      Giambó, R., Giannoni, F., & Piccione, P. (2018). A finite dimensional approach to light rays in general relativity. Nonlinear Analysis, 168, 198-221. doi:10.1016/j.na.2017.11.014
    • NLM

      Giambó R, Giannoni F, Piccione P. A finite dimensional approach to light rays in general relativity [Internet]. Nonlinear Analysis. 2018 ; 168 198-221.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.na.2017.11.014
    • Vancouver

      Giambó R, Giannoni F, Piccione P. A finite dimensional approach to light rays in general relativity [Internet]. Nonlinear Analysis. 2018 ; 168 198-221.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.na.2017.11.014
  • Source: Nonlinear Analysis. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COUTINHO, Andréia da Silva e PEREIRA, Antonio Luiz. Equivariant bifurcations in a non-local model of ferromagnetic materials. Nonlinear Analysis, v. 37, p. 1-13, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.nonrwa.2016.12.008. Acesso em: 11 nov. 2025.
    • APA

      Coutinho, A. da S., & Pereira, A. L. (2017). Equivariant bifurcations in a non-local model of ferromagnetic materials. Nonlinear Analysis, 37, 1-13. doi:10.1016/j.nonrwa.2016.12.008
    • NLM

      Coutinho A da S, Pereira AL. Equivariant bifurcations in a non-local model of ferromagnetic materials [Internet]. Nonlinear Analysis. 2017 ; 37 1-13.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.nonrwa.2016.12.008
    • Vancouver

      Coutinho A da S, Pereira AL. Equivariant bifurcations in a non-local model of ferromagnetic materials [Internet]. Nonlinear Analysis. 2017 ; 37 1-13.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.nonrwa.2016.12.008
  • Source: Nonlinear Analysis. Unidade: IME

    Assunto: ANÁLISE FUNCIONAL NÃO LINEAR

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PICCIONE, Paolo e TAUSK, Daniel Victor. On the Banach differential structure for sets of maps on non-compact domains. Nonlinear Analysis, v. 46, n. 2, p. 245-265, 2001Tradução . . Disponível em: https://doi.org/10.1016/s0362-546x(00)00116-4. Acesso em: 11 nov. 2025.
    • APA

      Piccione, P., & Tausk, D. V. (2001). On the Banach differential structure for sets of maps on non-compact domains. Nonlinear Analysis, 46( 2), 245-265. doi:10.1016/s0362-546x(00)00116-4
    • NLM

      Piccione P, Tausk DV. On the Banach differential structure for sets of maps on non-compact domains [Internet]. Nonlinear Analysis. 2001 ; 46( 2): 245-265.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/s0362-546x(00)00116-4
    • Vancouver

      Piccione P, Tausk DV. On the Banach differential structure for sets of maps on non-compact domains [Internet]. Nonlinear Analysis. 2001 ; 46( 2): 245-265.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/s0362-546x(00)00116-4

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025