Filtros : "Nonlinear Analysis" "EQUAÇÕES DIFERENCIAIS PARCIAIS" Limpar

Filtros



Refine with date range


  • Source: Nonlinear Analysis. Unidade: IME

    Subjects: EQUAÇÃO DE SCHRODINGER, EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RAMOS, Gustavo de Paula. Minimizers of mass-constrained functionals involving a nonattractive point interaction. Nonlinear Analysis, v. 262, p. 1-22, 2026Tradução . . Disponível em: https://doi.org/10.1016/j.na.2025.113905. Acesso em: 11 nov. 2025.
    • APA

      Ramos, G. de P. (2026). Minimizers of mass-constrained functionals involving a nonattractive point interaction. Nonlinear Analysis, 262, 1-22. doi:10.1016/j.na.2025.113905
    • NLM

      Ramos G de P. Minimizers of mass-constrained functionals involving a nonattractive point interaction [Internet]. Nonlinear Analysis. 2026 ; 262 1-22.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.na.2025.113905
    • Vancouver

      Ramos G de P. Minimizers of mass-constrained functionals involving a nonattractive point interaction [Internet]. Nonlinear Analysis. 2026 ; 262 1-22.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.na.2025.113905
  • Source: Nonlinear Analysis. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDRADE, João Henrique e WEI, Juncheng. Asymptotics for positive singular solutions to subcritical sixth order equations. Nonlinear Analysis, v. 255, n. artigo 113757, p. 1-28, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.na.2025.113757. Acesso em: 11 nov. 2025.
    • APA

      Andrade, J. H., & Wei, J. (2025). Asymptotics for positive singular solutions to subcritical sixth order equations. Nonlinear Analysis, 255( artigo 113757), 1-28. doi:10.1016/j.na.2025.113757
    • NLM

      Andrade JH, Wei J. Asymptotics for positive singular solutions to subcritical sixth order equations [Internet]. Nonlinear Analysis. 2025 ; 255( artigo 113757): 1-28.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.na.2025.113757
    • Vancouver

      Andrade JH, Wei J. Asymptotics for positive singular solutions to subcritical sixth order equations [Internet]. Nonlinear Analysis. 2025 ; 255( artigo 113757): 1-28.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.na.2025.113757
  • Source: Nonlinear Analysis. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ANÁLISE GLOBAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENCI, Vieri et al. Corrigendum to: Lusternik-Schnirelman and Morse Theory for the Van der Waals-Cahn-Hilliard equation with volume constraint [Nonlinear Analysis 220 (2022) 112851]. Nonlinear Analysis, v. 238, p. 1-9, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.na.2023.113389. Acesso em: 11 nov. 2025.
    • APA

      Benci, V., Nardulli, S., Acevedo, L. E. O., & Piccione, P. (2024). Corrigendum to: Lusternik-Schnirelman and Morse Theory for the Van der Waals-Cahn-Hilliard equation with volume constraint [Nonlinear Analysis 220 (2022) 112851]. Nonlinear Analysis, 238, 1-9. doi:10.1016/j.na.2023.113389
    • NLM

      Benci V, Nardulli S, Acevedo LEO, Piccione P. Corrigendum to: Lusternik-Schnirelman and Morse Theory for the Van der Waals-Cahn-Hilliard equation with volume constraint [Nonlinear Analysis 220 (2022) 112851] [Internet]. Nonlinear Analysis. 2024 ; 238 1-9.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.na.2023.113389
    • Vancouver

      Benci V, Nardulli S, Acevedo LEO, Piccione P. Corrigendum to: Lusternik-Schnirelman and Morse Theory for the Van der Waals-Cahn-Hilliard equation with volume constraint [Nonlinear Analysis 220 (2022) 112851] [Internet]. Nonlinear Analysis. 2024 ; 238 1-9.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.na.2023.113389
  • Source: Nonlinear Analysis. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ANÁLISE GLOBAL

    PrivadoAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENCI, Vieri et al. Lusternik-Schnirelman and Morse Theory for the Van der Waals-Cahn-Hilliard equation with volume constraint. Nonlinear Analysis, v. 220, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.na.2022.112851. Acesso em: 11 nov. 2025.
    • APA

      Benci, V., Nardulli, S., Acevedo, L. E. O., & Piccione, P. (2022). Lusternik-Schnirelman and Morse Theory for the Van der Waals-Cahn-Hilliard equation with volume constraint. Nonlinear Analysis, 220. doi:10.1016/j.na.2022.112851
    • NLM

      Benci V, Nardulli S, Acevedo LEO, Piccione P. Lusternik-Schnirelman and Morse Theory for the Van der Waals-Cahn-Hilliard equation with volume constraint [Internet]. Nonlinear Analysis. 2022 ; 220[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.na.2022.112851
    • Vancouver

      Benci V, Nardulli S, Acevedo LEO, Piccione P. Lusternik-Schnirelman and Morse Theory for the Van der Waals-Cahn-Hilliard equation with volume constraint [Internet]. Nonlinear Analysis. 2022 ; 220[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.na.2022.112851
  • Source: Nonlinear Analysis. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CELY, Liliana e GOLOSHCHAPOVA, Nataliia. Variational and stability properties of coupled NLS equations on the star graph. Nonlinear Analysis, v. 224, n. artigo 113056, p. 1-35, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.na.2022.113056. Acesso em: 11 nov. 2025.
    • APA

      Cely, L., & Goloshchapova, N. (2022). Variational and stability properties of coupled NLS equations on the star graph. Nonlinear Analysis, 224( artigo 113056), 1-35. doi:10.1016/j.na.2022.113056
    • NLM

      Cely L, Goloshchapova N. Variational and stability properties of coupled NLS equations on the star graph [Internet]. Nonlinear Analysis. 2022 ; 224( artigo 113056): 1-35.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.na.2022.113056
    • Vancouver

      Cely L, Goloshchapova N. Variational and stability properties of coupled NLS equations on the star graph [Internet]. Nonlinear Analysis. 2022 ; 224( artigo 113056): 1-35.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.na.2022.113056
  • Source: Nonlinear Analysis. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COUTINHO, Andréia da Silva e PEREIRA, Antonio Luiz. Equivariant bifurcations in a non-local model of ferromagnetic materials. Nonlinear Analysis, v. 37, p. 1-13, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.nonrwa.2016.12.008. Acesso em: 11 nov. 2025.
    • APA

      Coutinho, A. da S., & Pereira, A. L. (2017). Equivariant bifurcations in a non-local model of ferromagnetic materials. Nonlinear Analysis, 37, 1-13. doi:10.1016/j.nonrwa.2016.12.008
    • NLM

      Coutinho A da S, Pereira AL. Equivariant bifurcations in a non-local model of ferromagnetic materials [Internet]. Nonlinear Analysis. 2017 ; 37 1-13.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.nonrwa.2016.12.008
    • Vancouver

      Coutinho A da S, Pereira AL. Equivariant bifurcations in a non-local model of ferromagnetic materials [Internet]. Nonlinear Analysis. 2017 ; 37 1-13.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.nonrwa.2016.12.008
  • Source: Nonlinear Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      YANG, Zhijian e FENG, Na e MA, To Fu. Global attractor for the generalized double dispersion equation. Nonlinear Analysis, v. 115, p. 103-116, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.na.2014.12.006. Acesso em: 11 nov. 2025.
    • APA

      Yang, Z., Feng, N., & Ma, T. F. (2015). Global attractor for the generalized double dispersion equation. Nonlinear Analysis, 115, 103-116. doi:10.1016/j.na.2014.12.006
    • NLM

      Yang Z, Feng N, Ma TF. Global attractor for the generalized double dispersion equation [Internet]. Nonlinear Analysis. 2015 ; 115 103-116.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.na.2014.12.006
    • Vancouver

      Yang Z, Feng N, Ma TF. Global attractor for the generalized double dispersion equation [Internet]. Nonlinear Analysis. 2015 ; 115 103-116.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.na.2014.12.006
  • Source: Nonlinear Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBONE, Vera Lúcia e CARVALHO, Alexandre Nolasco de e SILVA, Karina Schiabel. Continuity of attractors for parabolic problems with localized large diffusion. Nonlinear Analysis, v. 68, n. 3, p. 515-535, 2008Tradução . . Disponível em: https://doi.org/10.1016/j.na.2006.11.017. Acesso em: 11 nov. 2025.
    • APA

      Carbone, V. L., Carvalho, A. N. de, & Silva, K. S. (2008). Continuity of attractors for parabolic problems with localized large diffusion. Nonlinear Analysis, 68( 3), 515-535. doi:10.1016/j.na.2006.11.017
    • NLM

      Carbone VL, Carvalho AN de, Silva KS. Continuity of attractors for parabolic problems with localized large diffusion [Internet]. Nonlinear Analysis. 2008 ; 68( 3): 515-535.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.na.2006.11.017
    • Vancouver

      Carbone VL, Carvalho AN de, Silva KS. Continuity of attractors for parabolic problems with localized large diffusion [Internet]. Nonlinear Analysis. 2008 ; 68( 3): 515-535.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.na.2006.11.017

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025