Filtros : "Financiamento Russian Foundation for Basic Research" "ÁLGEBRAS DE LIE" Limpar

Filtros



Refine with date range


  • Source: Communications in Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, LAÇOS, ÁLGEBRAS DE LIE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MIKHALEV, Alexander A. e SHESTAKOV, Ivan P. PBW-pairs of varieties of linear algebras. Communications in Algebra, v. 42, n. 2, p. 667-687, 2014Tradução . . Disponível em: https://doi.org/10.1080/00927872.2012.720867. Acesso em: 15 nov. 2025.
    • APA

      Mikhalev, A. A., & Shestakov, I. P. (2014). PBW-pairs of varieties of linear algebras. Communications in Algebra, 42( 2), 667-687. doi:10.1080/00927872.2012.720867
    • NLM

      Mikhalev AA, Shestakov IP. PBW-pairs of varieties of linear algebras [Internet]. Communications in Algebra. 2014 ; 42( 2): 667-687.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1080/00927872.2012.720867
    • Vancouver

      Mikhalev AA, Shestakov IP. PBW-pairs of varieties of linear algebras [Internet]. Communications in Algebra. 2014 ; 42( 2): 667-687.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1080/00927872.2012.720867
  • Source: Journal of Lie Theory. Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, NÚMEROS DE FIBONACCI

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PETROGRADSKY, Victor e SHESTAKOV, Ivan P. On properties of the Fibonacci restricted Lie algebra. Journal of Lie Theory, v. 23, n. 2, p. 407-431, 2013Tradução . . Disponível em: https://www.heldermann.de/JLT/JLT23/JLT232/jlt23019abs.pdf. Acesso em: 15 nov. 2025.
    • APA

      Petrogradsky, V., & Shestakov, I. P. (2013). On properties of the Fibonacci restricted Lie algebra. Journal of Lie Theory, 23( 2), 407-431. Recuperado de https://www.heldermann.de/JLT/JLT23/JLT232/jlt23019abs.pdf
    • NLM

      Petrogradsky V, Shestakov IP. On properties of the Fibonacci restricted Lie algebra [Internet]. Journal of Lie Theory. 2013 ; 23( 2): 407-431.[citado 2025 nov. 15 ] Available from: https://www.heldermann.de/JLT/JLT23/JLT232/jlt23019abs.pdf
    • Vancouver

      Petrogradsky V, Shestakov IP. On properties of the Fibonacci restricted Lie algebra [Internet]. Journal of Lie Theory. 2013 ; 23( 2): 407-431.[citado 2025 nov. 15 ] Available from: https://www.heldermann.de/JLT/JLT23/JLT232/jlt23019abs.pdf
  • Source: Algebra and Logic. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRA DIFERENCIAL, ÁLGEBRAS DE LIE, ÁLGEBRAS DE JORDAN

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ZHELYABIN, V. N e POPOV, A. A e SHESTAKOV, Ivan P. The coordinate ring of an n-dimensional sphere and some examples of differentially simple algebras. Algebra and Logic, v. 52, n. 4, p. 277-289, 2013Tradução . . Disponível em: https://doi.org/10.1007/s10469-013-9242-9. Acesso em: 15 nov. 2025.
    • APA

      Zhelyabin, V. N., Popov, A. A., & Shestakov, I. P. (2013). The coordinate ring of an n-dimensional sphere and some examples of differentially simple algebras. Algebra and Logic, 52( 4), 277-289. doi:10.1007/s10469-013-9242-9
    • NLM

      Zhelyabin VN, Popov AA, Shestakov IP. The coordinate ring of an n-dimensional sphere and some examples of differentially simple algebras [Internet]. Algebra and Logic. 2013 ; 52( 4): 277-289.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s10469-013-9242-9
    • Vancouver

      Zhelyabin VN, Popov AA, Shestakov IP. The coordinate ring of an n-dimensional sphere and some examples of differentially simple algebras [Internet]. Algebra and Logic. 2013 ; 52( 4): 277-289.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s10469-013-9242-9
  • Source: Algebras and Representation Theory. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRAS DE LIE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOVDI, Victor e GRICHKOV, Alexandre e SICILIANO, Salvatore. Filtered multiplicative bases of restricted enveloping algebras. Algebras and Representation Theory, v. 14, n. 4, p. 601-608, 2011Tradução . . Disponível em: https://doi.org/10.1007/s10468-009-9203-0. Acesso em: 15 nov. 2025.
    • APA

      Bovdi, V., Grichkov, A., & Siciliano, S. (2011). Filtered multiplicative bases of restricted enveloping algebras. Algebras and Representation Theory, 14( 4), 601-608. doi:10.1007/s10468-009-9203-0
    • NLM

      Bovdi V, Grichkov A, Siciliano S. Filtered multiplicative bases of restricted enveloping algebras [Internet]. Algebras and Representation Theory. 2011 ; 14( 4): 601-608.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s10468-009-9203-0
    • Vancouver

      Bovdi V, Grichkov A, Siciliano S. Filtered multiplicative bases of restricted enveloping algebras [Internet]. Algebras and Representation Theory. 2011 ; 14( 4): 601-608.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s10468-009-9203-0
  • Source: Journal of Lie Theory. Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, NÚMEROS DE FIBONACCI

    PrivadoAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PETROGRADSKY, Victor e SHESTAKOV, Ivan P. Examples of Self-Iterating Lie Algebras, 2. Journal of Lie Theory, v. 19, n. 4, p. 697-724, 2009Tradução . . Disponível em: https://www.heldermann-verlag.de/jlt/jlt19/petrola2e.pdf. Acesso em: 15 nov. 2025.
    • APA

      Petrogradsky, V., & Shestakov, I. P. (2009). Examples of Self-Iterating Lie Algebras, 2. Journal of Lie Theory, 19( 4), 697-724. Recuperado de https://www.heldermann-verlag.de/jlt/jlt19/petrola2e.pdf
    • NLM

      Petrogradsky V, Shestakov IP. Examples of Self-Iterating Lie Algebras, 2 [Internet]. Journal of Lie Theory. 2009 ; 19( 4): 697-724.[citado 2025 nov. 15 ] Available from: https://www.heldermann-verlag.de/jlt/jlt19/petrola2e.pdf
    • Vancouver

      Petrogradsky V, Shestakov IP. Examples of Self-Iterating Lie Algebras, 2 [Internet]. Journal of Lie Theory. 2009 ; 19( 4): 697-724.[citado 2025 nov. 15 ] Available from: https://www.heldermann-verlag.de/jlt/jlt19/petrola2e.pdf
  • Source: Algebra and Logic. Unidade: IME

    Assunto: ÁLGEBRAS DE LIE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROMANOVSKII, N. S e SHESTAKOV, Ivan P. Noetherianness of wreath products of Abelian Lie algebras with respect to equations of universal enveloping algebra. Algebra and Logic, v. 47, n. 4, p. 269-278, 2008Tradução . . Disponível em: https://doi.org/10.1007/s10469-008-9018-9. Acesso em: 15 nov. 2025.
    • APA

      Romanovskii, N. S., & Shestakov, I. P. (2008). Noetherianness of wreath products of Abelian Lie algebras with respect to equations of universal enveloping algebra. Algebra and Logic, 47( 4), 269-278. doi:10.1007/s10469-008-9018-9
    • NLM

      Romanovskii NS, Shestakov IP. Noetherianness of wreath products of Abelian Lie algebras with respect to equations of universal enveloping algebra [Internet]. Algebra and Logic. 2008 ; 47( 4): 269-278.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s10469-008-9018-9
    • Vancouver

      Romanovskii NS, Shestakov IP. Noetherianness of wreath products of Abelian Lie algebras with respect to equations of universal enveloping algebra [Internet]. Algebra and Logic. 2008 ; 47( 4): 269-278.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s10469-008-9018-9

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025