Filtros : "Journal of Chemical Information and Modeling" "2024" Removido: "Financiamento CAPES" Limpar

Filtros



Refine with date range


  • Source: Journal of Chemical Information and Modeling. Unidade: EACH

    Assunto: DOENÇA DE CHAGAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARBOSA, Henrique et al. Andrographolide: a diterpenoid from cymbopogon schoenanthus identified as a new hit compound against trypanosoma cruzi using machine learning and experimental approaches. Journal of Chemical Information and Modeling, v. 64, p. 2565−2576, 2024Tradução . . Disponível em: http://dx.doi.org/10.1021/acs.jcim.3c01410. Acesso em: 19 nov. 2025.
    • APA

      Barbosa, H., Espinoza, G. Z., Amaral, M., Levatti, E. V. de C., Abiuzi, M. B., Veríssimo, G. C., et al. (2024). Andrographolide: a diterpenoid from cymbopogon schoenanthus identified as a new hit compound against trypanosoma cruzi using machine learning and experimental approaches. Journal of Chemical Information and Modeling, 64, 2565−2576. doi:10.1021/acs.jcim.3c01410
    • NLM

      Barbosa H, Espinoza GZ, Amaral M, Levatti EV de C, Abiuzi MB, Veríssimo GC, Fernandes PO, Maltarollo VG, Tempone AG, Honorio KM, Lago JHG. Andrographolide: a diterpenoid from cymbopogon schoenanthus identified as a new hit compound against trypanosoma cruzi using machine learning and experimental approaches [Internet]. Journal of Chemical Information and Modeling. 2024 ; 64 2565−2576.[citado 2025 nov. 19 ] Available from: http://dx.doi.org/10.1021/acs.jcim.3c01410
    • Vancouver

      Barbosa H, Espinoza GZ, Amaral M, Levatti EV de C, Abiuzi MB, Veríssimo GC, Fernandes PO, Maltarollo VG, Tempone AG, Honorio KM, Lago JHG. Andrographolide: a diterpenoid from cymbopogon schoenanthus identified as a new hit compound against trypanosoma cruzi using machine learning and experimental approaches [Internet]. Journal of Chemical Information and Modeling. 2024 ; 64 2565−2576.[citado 2025 nov. 19 ] Available from: http://dx.doi.org/10.1021/acs.jcim.3c01410
  • Source: Journal of Chemical Information and Modeling. Unidade: FFCLRP

    Subjects: ALGORITMOS, APRENDIZADO COMPUTACIONAL, BIOMATERIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MERZ, Kenneth M et al. Machine Learning in Materials Science. [Editorial]. Journal of Chemical Information and Modeling. Washington: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Disponível em: https://doi.org/10.1021/acs.jcim.4c00727. Acesso em: 19 nov. 2025. , 2024
    • APA

      Merz, K. M., Choong, Y. S., Cournia, Z., Isayev, O., Soares, T. A., Wei, G. -W., & Zhu, F. (2024). Machine Learning in Materials Science. [Editorial]. Journal of Chemical Information and Modeling. Washington: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. doi:10.1021/acs.jcim.4c00727
    • NLM

      Merz KM, Choong YS, Cournia Z, Isayev O, Soares TA, Wei G-W, Zhu F. Machine Learning in Materials Science. [Editorial] [Internet]. Journal of Chemical Information and Modeling. 2024 ; 64( 10): 3959-3960.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1021/acs.jcim.4c00727
    • Vancouver

      Merz KM, Choong YS, Cournia Z, Isayev O, Soares TA, Wei G-W, Zhu F. Machine Learning in Materials Science. [Editorial] [Internet]. Journal of Chemical Information and Modeling. 2024 ; 64( 10): 3959-3960.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1021/acs.jcim.4c00727
  • Source: Journal of Chemical Information and Modeling. Unidade: IQSC

    Subjects: ENERGIA, QUÍMICA TEÓRICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONZÁLEZ, José E. et al. Decoding Van der Waals Impact on Chirality Transfer in Perovskite Structures: Density Functional Theory Insights. Journal of Chemical Information and Modeling, v. 64, n. 4, p. 1306–1318, 2024Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.3c01895. Acesso em: 19 nov. 2025.
    • APA

      González, J. E., Besse, R., Lima, M. P., & Silva, J. L. F. da. (2024). Decoding Van der Waals Impact on Chirality Transfer in Perovskite Structures: Density Functional Theory Insights. Journal of Chemical Information and Modeling, 64( 4), 1306–1318. doi:10.1021/acs.jcim.3c01895
    • NLM

      González JE, Besse R, Lima MP, Silva JLF da. Decoding Van der Waals Impact on Chirality Transfer in Perovskite Structures: Density Functional Theory Insights [Internet]. Journal of Chemical Information and Modeling. 2024 ;64( 4): 1306–1318.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1021/acs.jcim.3c01895
    • Vancouver

      González JE, Besse R, Lima MP, Silva JLF da. Decoding Van der Waals Impact on Chirality Transfer in Perovskite Structures: Density Functional Theory Insights [Internet]. Journal of Chemical Information and Modeling. 2024 ;64( 4): 1306–1318.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1021/acs.jcim.3c01895
  • Source: Journal of Chemical Information and Modeling. Unidade: FFCLRP

    Subjects: APRENDIZADO COMPUTACIONAL, SIMULAÇÃO, MODELAGEM MOLECULAR, NANOPARTÍCULAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KARMAKAR, Tarak e SOARES, Thereza Amélia e MERZ JR, Kenneth M. Enhancing coarse-grained models through machine learning. [Editorial]. Journal of Chemical Information and Modeling. Washington: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Disponível em: https://doi.org/10.1021/acs.jcim.4c00537. Acesso em: 19 nov. 2025. , 2024
    • APA

      Karmakar, T., Soares, T. A., & Merz Jr, K. M. (2024). Enhancing coarse-grained models through machine learning. [Editorial]. Journal of Chemical Information and Modeling. Washington: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. doi:10.1021/acs.jcim.4c00537
    • NLM

      Karmakar T, Soares TA, Merz Jr KM. Enhancing coarse-grained models through machine learning. [Editorial] [Internet]. Journal of Chemical Information and Modeling. 2024 ; 64( 8): 2931-2932.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1021/acs.jcim.4c00537
    • Vancouver

      Karmakar T, Soares TA, Merz Jr KM. Enhancing coarse-grained models through machine learning. [Editorial] [Internet]. Journal of Chemical Information and Modeling. 2024 ; 64( 8): 2931-2932.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1021/acs.jcim.4c00537
  • Source: Journal of Chemical Information and Modeling. Unidades: IQSC, FFCLRP

    Subjects: BIOENGENHARIA, BIOTECNOLOGIA, BIOLOGIA, MATERIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PRATI, Ronaldo C. et al. The Impact of Interdisciplinary, Gender and Geographic Distributions on the Citation Patterns of the Journal of Chemical Information and Modeling. Journal of Chemical Information and Modeling, v. 64, n. 4, p. 1107–1111, 2024Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.3c02014. Acesso em: 19 nov. 2025.
    • APA

      Prati, R. C., Rodrigues, B. S. M., Aragão, I., Silva, T. A. S. da, Quiles, M. G., & Silva, J. L. F. da. (2024). The Impact of Interdisciplinary, Gender and Geographic Distributions on the Citation Patterns of the Journal of Chemical Information and Modeling. Journal of Chemical Information and Modeling, 64( 4), 1107–1111. doi:10.1021/acs.jcim.3c02014
    • NLM

      Prati RC, Rodrigues BSM, Aragão I, Silva TAS da, Quiles MG, Silva JLF da. The Impact of Interdisciplinary, Gender and Geographic Distributions on the Citation Patterns of the Journal of Chemical Information and Modeling [Internet]. Journal of Chemical Information and Modeling. 2024 ;64( 4): 1107–1111.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1021/acs.jcim.3c02014
    • Vancouver

      Prati RC, Rodrigues BSM, Aragão I, Silva TAS da, Quiles MG, Silva JLF da. The Impact of Interdisciplinary, Gender and Geographic Distributions on the Citation Patterns of the Journal of Chemical Information and Modeling [Internet]. Journal of Chemical Information and Modeling. 2024 ;64( 4): 1107–1111.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1021/acs.jcim.3c02014

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025