Source: AgriEngineering. Unidades: FZEA, ESALQ
Subjects: APRENDIZADO COMPUTACIONAL, ESTADO NUTRICIONAL, IMAGEM DIGITAL, NUTRIÇÃO VEGETAL, NUTRIENTES MINERAIS DO SOLO, POTÁSSIO, SORGO
ABNT
MARTINS, Guilherme Augusto et al. Using machine learning and RGB images to assess nitrogen and potassium status in sorghum (Sorghum bicolor L.) under field conditions. AgriEngineering, v. 7, p. 1-17, 2025Tradução . . Disponível em: https://doi.org/10.3390/agriengineering7110367. Acesso em: 05 dez. 2025.APA
Martins, G. A., Baesso, M. M., Devechio, F. de F. da S., Tech, A. R. B., Regazzo, J. R., Ricci, C. E. N., & Leão, M. de L. (2025). Using machine learning and RGB images to assess nitrogen and potassium status in sorghum (Sorghum bicolor L.) under field conditions. AgriEngineering, 7, 1-17. doi:10.3390/agriengineering7110367NLM
Martins GA, Baesso MM, Devechio F de F da S, Tech ARB, Regazzo JR, Ricci CEN, Leão M de L. Using machine learning and RGB images to assess nitrogen and potassium status in sorghum (Sorghum bicolor L.) under field conditions [Internet]. AgriEngineering. 2025 ; 7 1-17.[citado 2025 dez. 05 ] Available from: https://doi.org/10.3390/agriengineering7110367Vancouver
Martins GA, Baesso MM, Devechio F de F da S, Tech ARB, Regazzo JR, Ricci CEN, Leão M de L. Using machine learning and RGB images to assess nitrogen and potassium status in sorghum (Sorghum bicolor L.) under field conditions [Internet]. AgriEngineering. 2025 ; 7 1-17.[citado 2025 dez. 05 ] Available from: https://doi.org/10.3390/agriengineering7110367
