Filtros : "TEORIA ERGÓDICA" "Stochastics and Dynamics" Removido: "Financiamento Instituto Serrapilheira" Limpar

Filtros



Refine with date range


  • Source: Stochastics and Dynamics. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, ANÁLISE REAL

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIMA, Amanda de e SMANIA, Daniel. Central limit theorem for generalized Weierstrass functions. Stochastics and Dynamics, v. 19, n. 1, p. 1950002-1-1950002-18, 2019Tradução . . Disponível em: https://doi.org/10.1142/S0219493719500023. Acesso em: 27 nov. 2025.
    • APA

      Lima, A. de, & Smania, D. (2019). Central limit theorem for generalized Weierstrass functions. Stochastics and Dynamics, 19( 1), 1950002-1-1950002-18. doi:10.1142/S0219493719500023
    • NLM

      Lima A de, Smania D. Central limit theorem for generalized Weierstrass functions [Internet]. Stochastics and Dynamics. 2019 ; 19( 1): 1950002-1-1950002-18.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1142/S0219493719500023
    • Vancouver

      Lima A de, Smania D. Central limit theorem for generalized Weierstrass functions [Internet]. Stochastics and Dynamics. 2019 ; 19( 1): 1950002-1-1950002-18.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1142/S0219493719500023
  • Source: Stochastics and Dynamics. Unidade: IME

    Subjects: PROCESSOS ESTACIONÁRIOS, TEOREMAS LIMITES, PROBABILIDADE, DINÂMICA TOPOLÓGICA, TEORIA ERGÓDICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ABADI, Miguel Natalio e SAUSSOL, Benoît. Almost sure convergence of the clustering factor in α-mixing processes. Stochastics and Dynamics, v. 16, n. article º 1660016, p. 11 , 2016Tradução . . Disponível em: https://doi.org/10.1142/S0219493716600169. Acesso em: 27 nov. 2025.
    • APA

      Abadi, M. N., & Saussol, B. (2016). Almost sure convergence of the clustering factor in α-mixing processes. Stochastics and Dynamics, 16( article º 1660016), 11 . doi:10.1142/S0219493716600169
    • NLM

      Abadi MN, Saussol B. Almost sure convergence of the clustering factor in α-mixing processes [Internet]. Stochastics and Dynamics. 2016 ; 16( article º 1660016): 11 .[citado 2025 nov. 27 ] Available from: https://doi.org/10.1142/S0219493716600169
    • Vancouver

      Abadi MN, Saussol B. Almost sure convergence of the clustering factor in α-mixing processes [Internet]. Stochastics and Dynamics. 2016 ; 16( article º 1660016): 11 .[citado 2025 nov. 27 ] Available from: https://doi.org/10.1142/S0219493716600169
  • Source: Stochastics and Dynamics. Unidade: ICMC

    Assunto: TEORIA ERGÓDICA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MESSAOUDI, A. e SMANIA, Daniel. Eigenvalues of fibonacci stochastic adding machine. Stochastics and Dynamics, v. 10, n. 2, p. 291-313, 2010Tradução . . Disponível em: http://www.worldscinet.com/sd/10/preserved-docs/1002/S0219493710002966.pdf. Acesso em: 27 nov. 2025.
    • APA

      Messaoudi, A., & Smania, D. (2010). Eigenvalues of fibonacci stochastic adding machine. Stochastics and Dynamics, 10( 2), 291-313. Recuperado de http://www.worldscinet.com/sd/10/preserved-docs/1002/S0219493710002966.pdf
    • NLM

      Messaoudi A, Smania D. Eigenvalues of fibonacci stochastic adding machine [Internet]. Stochastics and Dynamics. 2010 ; 10( 2): 291-313.[citado 2025 nov. 27 ] Available from: http://www.worldscinet.com/sd/10/preserved-docs/1002/S0219493710002966.pdf
    • Vancouver

      Messaoudi A, Smania D. Eigenvalues of fibonacci stochastic adding machine [Internet]. Stochastics and Dynamics. 2010 ; 10( 2): 291-313.[citado 2025 nov. 27 ] Available from: http://www.worldscinet.com/sd/10/preserved-docs/1002/S0219493710002966.pdf
  • Source: Stochastics and Dynamics. Unidade: IME

    Assunto: TEORIA ERGÓDICA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FISHER, Albert Meads. Nonstationary mixing and the unique ergodicity of adic transformations. Stochastics and Dynamics, v. 9, n. 3, p. 335-391, 2009Tradução . . Disponível em: https://doi-org.ez67.periodicos.capes.gov.br/10.1142/S0219493709002701. Acesso em: 27 nov. 2025.
    • APA

      Fisher, A. M. (2009). Nonstationary mixing and the unique ergodicity of adic transformations. Stochastics and Dynamics, 9( 3), 335-391. Recuperado de https://doi-org.ez67.periodicos.capes.gov.br/10.1142/S0219493709002701
    • NLM

      Fisher AM. Nonstationary mixing and the unique ergodicity of adic transformations [Internet]. Stochastics and Dynamics. 2009 ; 9( 3): 335-391.[citado 2025 nov. 27 ] Available from: https://doi-org.ez67.periodicos.capes.gov.br/10.1142/S0219493709002701
    • Vancouver

      Fisher AM. Nonstationary mixing and the unique ergodicity of adic transformations [Internet]. Stochastics and Dynamics. 2009 ; 9( 3): 335-391.[citado 2025 nov. 27 ] Available from: https://doi-org.ez67.periodicos.capes.gov.br/10.1142/S0219493709002701

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025