Filtros : "TEORIA ERGÓDICA" "Inglaterra" Removido: "Discrete and Continuous Dynamical Systems - Série A" Limpar

Filtros



Refine with date range


  • Source: Ergodic Theory and Dynamical Systems. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, FUNÇÕES DE UMA VARIÁVEL COMPLEXA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CLARK, Trevor e FARIA, Edson de e STRIEN, Sebastian van. Asymptotically holomorphic methods for infinitely renormalizable unimodal maps. Ergodic Theory and Dynamical Systems, v. 43, n. 11, p. 3636-3684, 2023Tradução . . Disponível em: https://doi.org/10.1017/etds.2022.72. Acesso em: 27 nov. 2025.
    • APA

      Clark, T., Faria, E. de, & Strien, S. van. (2023). Asymptotically holomorphic methods for infinitely renormalizable unimodal maps. Ergodic Theory and Dynamical Systems, 43( 11), 3636-3684. doi:10.1017/etds.2022.72
    • NLM

      Clark T, Faria E de, Strien S van. Asymptotically holomorphic methods for infinitely renormalizable unimodal maps [Internet]. Ergodic Theory and Dynamical Systems. 2023 ; 43( 11): 3636-3684.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1017/etds.2022.72
    • Vancouver

      Clark T, Faria E de, Strien S van. Asymptotically holomorphic methods for infinitely renormalizable unimodal maps [Internet]. Ergodic Theory and Dynamical Systems. 2023 ; 43( 11): 3636-3684.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1017/etds.2022.72
  • Source: Nonlinearity. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, ENTROPIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TAHZIBI, Ali. Unstable entropy in smooth ergodic theory. Nonlinearity, v. 34, n. 8, p. R75-R118, 2021Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/abd7c7. Acesso em: 27 nov. 2025.
    • APA

      Tahzibi, A. (2021). Unstable entropy in smooth ergodic theory. Nonlinearity, 34( 8), R75-R118. doi:10.1088/1361-6544/abd7c7
    • NLM

      Tahzibi A. Unstable entropy in smooth ergodic theory [Internet]. Nonlinearity. 2021 ; 34( 8): R75-R118.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1088/1361-6544/abd7c7
    • Vancouver

      Tahzibi A. Unstable entropy in smooth ergodic theory [Internet]. Nonlinearity. 2021 ; 34( 8): R75-R118.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1088/1361-6544/abd7c7
  • Source: Nonlinearity. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CRISOSTOMO, Jorge e TAHZIBI, Ali. Equilibrium states for partially hyperbolic diffeomorphisms with hyperbolic linear part. Nonlinearity, v. 32, n. 2, p. 584-602, 2019Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/aaec98. Acesso em: 27 nov. 2025.
    • APA

      Crisostomo, J., & Tahzibi, A. (2019). Equilibrium states for partially hyperbolic diffeomorphisms with hyperbolic linear part. Nonlinearity, 32( 2), 584-602. doi:10.1088/1361-6544/aaec98
    • NLM

      Crisostomo J, Tahzibi A. Equilibrium states for partially hyperbolic diffeomorphisms with hyperbolic linear part [Internet]. Nonlinearity. 2019 ; 32( 2): 584-602.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1088/1361-6544/aaec98
    • Vancouver

      Crisostomo J, Tahzibi A. Equilibrium states for partially hyperbolic diffeomorphisms with hyperbolic linear part [Internet]. Nonlinearity. 2019 ; 32( 2): 584-602.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1088/1361-6544/aaec98
  • Source: Journal of the London Mathematical Society. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ADDAS-ZANATA, Salvador. Uniform bounds for diffeomorphisms of the torus and a conjecture of Boyland. Journal of the London Mathematical Society, v. 91, n. 2, p. 537-553, 2015Tradução . . Disponível em: https://doi.org/10.1112/jlms/jdu081. Acesso em: 27 nov. 2025.
    • APA

      Addas-Zanata, S. (2015). Uniform bounds for diffeomorphisms of the torus and a conjecture of Boyland. Journal of the London Mathematical Society, 91( 2), 537-553. doi:10.1112/jlms/jdu081
    • NLM

      Addas-Zanata S. Uniform bounds for diffeomorphisms of the torus and a conjecture of Boyland [Internet]. Journal of the London Mathematical Society. 2015 ; 91( 2): 537-553.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1112/jlms/jdu081
    • Vancouver

      Addas-Zanata S. Uniform bounds for diffeomorphisms of the torus and a conjecture of Boyland [Internet]. Journal of the London Mathematical Society. 2015 ; 91( 2): 537-553.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1112/jlms/jdu081
  • Source: Nonlinearity. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA QUALITATIVA, SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MANOEL, Miriam Garcia e ROBERTS, Mark. Gradient systems on coupled cell networks. Nonlinearity, v. 28, n. 10, p. 3487-3509, 2015Tradução . . Disponível em: https://doi.org/10.1088/0951-7715/28/10/3487. Acesso em: 27 nov. 2025.
    • APA

      Manoel, M. G., & Roberts, M. (2015). Gradient systems on coupled cell networks. Nonlinearity, 28( 10), 3487-3509. doi:10.1088/0951-7715/28/10/3487
    • NLM

      Manoel MG, Roberts M. Gradient systems on coupled cell networks [Internet]. Nonlinearity. 2015 ; 28( 10): 3487-3509.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1088/0951-7715/28/10/3487
    • Vancouver

      Manoel MG, Roberts M. Gradient systems on coupled cell networks [Internet]. Nonlinearity. 2015 ; 28( 10): 3487-3509.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1088/0951-7715/28/10/3487
  • Source: Ergodic Theory and Dynamical Systems. Unidade: IME

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BISSACOT, Rodrigo e FREIRE JÚNIOR, Ricardo dos Santos. On the existence of maximizing measures for irreducible countable Markov shifts: a dynamical proof. Ergodic Theory and Dynamical Systems, v. 34, n. 4, p. 1103-1115, 2014Tradução . . Disponível em: https://doi.org/10.1017/etds.2012.194. Acesso em: 27 nov. 2025.
    • APA

      Bissacot, R., & Freire Júnior, R. dos S. (2014). On the existence of maximizing measures for irreducible countable Markov shifts: a dynamical proof. Ergodic Theory and Dynamical Systems, 34( 4), 1103-1115. doi:10.1017/etds.2012.194
    • NLM

      Bissacot R, Freire Júnior R dos S. On the existence of maximizing measures for irreducible countable Markov shifts: a dynamical proof [Internet]. Ergodic Theory and Dynamical Systems. 2014 ; 34( 4): 1103-1115.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1017/etds.2012.194
    • Vancouver

      Bissacot R, Freire Júnior R dos S. On the existence of maximizing measures for irreducible countable Markov shifts: a dynamical proof [Internet]. Ergodic Theory and Dynamical Systems. 2014 ; 34( 4): 1103-1115.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1017/etds.2012.194
  • Source: Nonlinearity. Unidade: IME

    Assunto: TEORIA ERGÓDICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ABADI, Miguel Natalio e LAMBERT, Rodrigo. The distribution of the short-return function. Nonlinearity, v. 26, n. 5, p. 1143-1162, 2013Tradução . . Disponível em: https://doi.org/10.1088/0951-7715/26/5/1143. Acesso em: 27 nov. 2025.
    • APA

      Abadi, M. N., & Lambert, R. (2013). The distribution of the short-return function. Nonlinearity, 26( 5), 1143-1162. doi:10.1088/0951-7715/26/5/1143
    • NLM

      Abadi MN, Lambert R. The distribution of the short-return function [Internet]. Nonlinearity. 2013 ; 26( 5): 1143-1162.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1088/0951-7715/26/5/1143
    • Vancouver

      Abadi MN, Lambert R. The distribution of the short-return function [Internet]. Nonlinearity. 2013 ; 26( 5): 1143-1162.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1088/0951-7715/26/5/1143
  • Source: Nonlinearity. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MICENA, F e TAHZIBI, Ali. Regularity of foliations and Lyapunov exponents of partially hyperbolic dynamics on 3-torus. Nonlinearity, v. 26, n. 4, p. 1071-1082, 2013Tradução . . Disponível em: https://doi.org/10.1088/0951-7715/26/4/1071. Acesso em: 27 nov. 2025.
    • APA

      Micena, F., & Tahzibi, A. (2013). Regularity of foliations and Lyapunov exponents of partially hyperbolic dynamics on 3-torus. Nonlinearity, 26( 4), 1071-1082. doi:10.1088/0951-7715/26/4/1071
    • NLM

      Micena F, Tahzibi A. Regularity of foliations and Lyapunov exponents of partially hyperbolic dynamics on 3-torus [Internet]. Nonlinearity. 2013 ; 26( 4): 1071-1082.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1088/0951-7715/26/4/1071
    • Vancouver

      Micena F, Tahzibi A. Regularity of foliations and Lyapunov exponents of partially hyperbolic dynamics on 3-torus [Internet]. Nonlinearity. 2013 ; 26( 4): 1071-1082.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1088/0951-7715/26/4/1071
  • Source: Nonlinearity. Unidade: IME

    Assunto: TEORIA ERGÓDICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TAL, Fábio Armando e ADDAS-ZANATA, Salvador. Maximizing measures for endomorphisms of the circle. Nonlinearity, v. 21, n. 10, p. 2347-2359, 2008Tradução . . Disponível em: https://doi.org/10.1088/0951-7715/21/10/008. Acesso em: 27 nov. 2025.
    • APA

      Tal, F. A., & Addas-Zanata, S. (2008). Maximizing measures for endomorphisms of the circle. Nonlinearity, 21( 10), 2347-2359. doi:10.1088/0951-7715/21/10/008
    • NLM

      Tal FA, Addas-Zanata S. Maximizing measures for endomorphisms of the circle [Internet]. Nonlinearity. 2008 ; 21( 10): 2347-2359.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1088/0951-7715/21/10/008
    • Vancouver

      Tal FA, Addas-Zanata S. Maximizing measures for endomorphisms of the circle [Internet]. Nonlinearity. 2008 ; 21( 10): 2347-2359.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1088/0951-7715/21/10/008

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025