Filtros : "Numerical Algorithms" "Financiamento CNPq" Removido: "2025" Limpar

Filtros



Refine with date range


  • Source: Numerical Algorithms. Unidade: IME

    Subjects: OTIMIZAÇÃO MATEMÁTICA, ALGORITMOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. A PDE-informed optimization algorithm for river flow predictions. Numerical Algorithms, v. 96, n. 1, p. 289-304, 2024Tradução . . Disponível em: https://doi.org/10.1007/s11075-023-01647-1. Acesso em: 19 nov. 2025.
    • APA

      Birgin, E. J. G., & Martínez, J. M. (2024). A PDE-informed optimization algorithm for river flow predictions. Numerical Algorithms, 96( 1), 289-304. doi:10.1007/s11075-023-01647-1
    • NLM

      Birgin EJG, Martínez JM. A PDE-informed optimization algorithm for river flow predictions [Internet]. Numerical Algorithms. 2024 ; 96( 1): 289-304.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1007/s11075-023-01647-1
    • Vancouver

      Birgin EJG, Martínez JM. A PDE-informed optimization algorithm for river flow predictions [Internet]. Numerical Algorithms. 2024 ; 96( 1): 289-304.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1007/s11075-023-01647-1
  • Source: Numerical Algorithms. Unidade: IME

    Subjects: PROGRAMAÇÃO MATEMÁTICA, OTIMIZAÇÃO NÃO LINEAR, MÉTODOS NUMÉRICOS

    Versão AceitaAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. On the best achievable quality of limit points of augmented Lagrangian schemes. Numerical Algorithms, v. 90, n. 2, p. 851-877, 2022Tradução . . Disponível em: https://doi.org/10.1007/s11075-021-01212-8. Acesso em: 19 nov. 2025.
    • APA

      Andreani, R., Haeser, G., Mito, L., Ramos, A., & Secchin, L. D. (2022). On the best achievable quality of limit points of augmented Lagrangian schemes. Numerical Algorithms, 90( 2), 851-877. doi:10.1007/s11075-021-01212-8
    • NLM

      Andreani R, Haeser G, Mito L, Ramos A, Secchin LD. On the best achievable quality of limit points of augmented Lagrangian schemes [Internet]. Numerical Algorithms. 2022 ; 90( 2): 851-877.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1007/s11075-021-01212-8
    • Vancouver

      Andreani R, Haeser G, Mito L, Ramos A, Secchin LD. On the best achievable quality of limit points of augmented Lagrangian schemes [Internet]. Numerical Algorithms. 2022 ; 90( 2): 851-877.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1007/s11075-021-01212-8
  • Source: Numerical Algorithms. Unidades: ICMC, IME

    Assunto: ALGORITMOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDRETTA, Marina e BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. Partial spectral projected gradient method with active-set strategy for linearly constrained optimization. Numerical Algorithms, v. 53, n. 1, p. 23-52, 2010Tradução . . Disponível em: https://doi.org/10.1007/s11075-009-9289-9. Acesso em: 19 nov. 2025.
    • APA

      Andretta, M., Birgin, E. J. G., & Martínez, J. M. (2010). Partial spectral projected gradient method with active-set strategy for linearly constrained optimization. Numerical Algorithms, 53( 1), 23-52. doi:10.1007/s11075-009-9289-9
    • NLM

      Andretta M, Birgin EJG, Martínez JM. Partial spectral projected gradient method with active-set strategy for linearly constrained optimization [Internet]. Numerical Algorithms. 2010 ; 53( 1): 23-52.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1007/s11075-009-9289-9
    • Vancouver

      Andretta M, Birgin EJG, Martínez JM. Partial spectral projected gradient method with active-set strategy for linearly constrained optimization [Internet]. Numerical Algorithms. 2010 ; 53( 1): 23-52.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1007/s11075-009-9289-9
  • Source: Numerical Algorithms. Unidade: IME

    Assunto: ANÁLISE NUMÉRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e KREJIC, Natavsa e MARTÍNEZ, José Mário. Globally convergent inexact quasi-Newton methods for solving nonlinear systems. Numerical Algorithms, v. 32, n. 2-4, p. 249-260, 2003Tradução . . Disponível em: https://doi.org/10.1023%2FA%3A1024013824524. Acesso em: 19 nov. 2025.
    • APA

      Birgin, E. J. G., Krejic, N., & Martínez, J. M. (2003). Globally convergent inexact quasi-Newton methods for solving nonlinear systems. Numerical Algorithms, 32( 2-4), 249-260. doi:10.1023%2FA%3A1024013824524
    • NLM

      Birgin EJG, Krejic N, Martínez JM. Globally convergent inexact quasi-Newton methods for solving nonlinear systems [Internet]. Numerical Algorithms. 2003 ; 32( 2-4): 249-260.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1023%2FA%3A1024013824524
    • Vancouver

      Birgin EJG, Krejic N, Martínez JM. Globally convergent inexact quasi-Newton methods for solving nonlinear systems [Internet]. Numerical Algorithms. 2003 ; 32( 2-4): 249-260.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1023%2FA%3A1024013824524

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025