Filtros : "Journal of Petroleum Science and Engineering" "CARNEIRO, CLEYTON DE CARVALHO" Limpar

Filtros



Refine with date range


  • Source: Journal of Petroleum Science and Engineering. Unidade: EP

    Subjects: PETROGRAFIA, INTELIGÊNCIA ARTIFICIAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TAMOTO, Hugo e GIORIA, Rafael dos Santos e CARNEIRO, Cleyton de Carvalho. Prediction of nuclear magnetic resonance porosity well-logs in a carbonate reservoir using supervised machine learning models. Journal of Petroleum Science and Engineering, v. 220, p. 10 , 2024Tradução . . Disponível em: https://doi.org/10.1016/j.petrol.2022.111169. Acesso em: 09 nov. 2025.
    • APA

      Tamoto, H., Gioria, R. dos S., & Carneiro, C. de C. (2024). Prediction of nuclear magnetic resonance porosity well-logs in a carbonate reservoir using supervised machine learning models. Journal of Petroleum Science and Engineering, 220, 10 . doi:10.1016/j.petrol.2022.111169
    • NLM

      Tamoto H, Gioria R dos S, Carneiro C de C. Prediction of nuclear magnetic resonance porosity well-logs in a carbonate reservoir using supervised machine learning models [Internet]. Journal of Petroleum Science and Engineering. 2024 ; 220 10 .[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.petrol.2022.111169
    • Vancouver

      Tamoto H, Gioria R dos S, Carneiro C de C. Prediction of nuclear magnetic resonance porosity well-logs in a carbonate reservoir using supervised machine learning models [Internet]. Journal of Petroleum Science and Engineering. 2024 ; 220 10 .[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.petrol.2022.111169
  • Source: Journal of Petroleum Science and Engineering. Unidade: EP

    Subjects: ESPECTROSCOPIA ATÔMICA, ESPECTROSCOPIA DE RAIO GAMA, INTELIGÊNCIA ARTIFICIAL, PRÉ-SAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Lucas Abreu Blanes de e CARNEIRO, Cleyton de Carvalho. Synthetic geochemical well logs generation using ensemble machine learning techniques for the Brazilian pre-salt reservoirs. Journal of Petroleum Science and Engineering, v. 196, n. Ja 2021. Artigo 108080, p. 1-25, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.petrol.2020.108080. Acesso em: 09 nov. 2025.
    • APA

      Oliveira, L. A. B. de, & Carneiro, C. de C. (2021). Synthetic geochemical well logs generation using ensemble machine learning techniques for the Brazilian pre-salt reservoirs. Journal of Petroleum Science and Engineering, 196( Ja 2021. Artigo 108080), 1-25. doi:10.1016/j.petrol.2020.108080
    • NLM

      Oliveira LAB de, Carneiro C de C. Synthetic geochemical well logs generation using ensemble machine learning techniques for the Brazilian pre-salt reservoirs [Internet]. Journal of Petroleum Science and Engineering. 2021 ; 196( Ja 2021. Artigo 108080): 1-25.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.petrol.2020.108080
    • Vancouver

      Oliveira LAB de, Carneiro C de C. Synthetic geochemical well logs generation using ensemble machine learning techniques for the Brazilian pre-salt reservoirs [Internet]. Journal of Petroleum Science and Engineering. 2021 ; 196( Ja 2021. Artigo 108080): 1-25.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.petrol.2020.108080
  • Source: Journal of Petroleum Science and Engineering. Unidade: EP

    Subjects: PRÉ-SAL, MINERAIS, CARBONATOS, CARBONATOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERRARI, Jean Vicente et al. Influence of carbonate reservoir mineral heterogeneities on contact angle measurements. Journal of Petroleum Science and Engineering, v. 199, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.petrol.2020.108313. Acesso em: 09 nov. 2025.
    • APA

      Ferrari, J. V., Silveira, B. M. de O., Arismendi Florez, J. J., Fagundes, T. B., Silva, M. A. da T., Skinner, R., et al. (2021). Influence of carbonate reservoir mineral heterogeneities on contact angle measurements. Journal of Petroleum Science and Engineering, 199. doi:10.1016/j.petrol.2020.108313
    • NLM

      Ferrari JV, Silveira BM de O, Arismendi Florez JJ, Fagundes TB, Silva MA da T, Skinner R, Ulsen C, Carneiro C de C. Influence of carbonate reservoir mineral heterogeneities on contact angle measurements [Internet]. Journal of Petroleum Science and Engineering. 2021 ;199[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.petrol.2020.108313
    • Vancouver

      Ferrari JV, Silveira BM de O, Arismendi Florez JJ, Fagundes TB, Silva MA da T, Skinner R, Ulsen C, Carneiro C de C. Influence of carbonate reservoir mineral heterogeneities on contact angle measurements [Internet]. Journal of Petroleum Science and Engineering. 2021 ;199[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.petrol.2020.108313
  • Source: Journal of Petroleum Science and Engineering. Unidade: EP

    Subjects: INTELIGÊNCIA ARTIFICIAL, PETROGRAFIA, ROCHAS SEDIMENTARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RUBO, Rafael Andrello et al. Digital petrography: Mineralogy and porosity identification using machine learning algorithms in petrographic thin section images. Journal of Petroleum Science and Engineering, v. 183, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.petrol.2019.106382. Acesso em: 09 nov. 2025.
    • APA

      Rubo, R. A., Carneiro, C. de C., Michelon, M. F., & Gioria, R. dos S. (2019). Digital petrography: Mineralogy and porosity identification using machine learning algorithms in petrographic thin section images. Journal of Petroleum Science and Engineering, 183. doi:10.1016/j.petrol.2019.106382
    • NLM

      Rubo RA, Carneiro C de C, Michelon MF, Gioria R dos S. Digital petrography: Mineralogy and porosity identification using machine learning algorithms in petrographic thin section images [Internet]. Journal of Petroleum Science and Engineering. 2019 ;183[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.petrol.2019.106382
    • Vancouver

      Rubo RA, Carneiro C de C, Michelon MF, Gioria R dos S. Digital petrography: Mineralogy and porosity identification using machine learning algorithms in petrographic thin section images [Internet]. Journal of Petroleum Science and Engineering. 2019 ;183[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.petrol.2019.106382

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025