Filtros : "Journal of Petroleum Science and Engineering" "REDES NEURAIS" Limpar

Filtros



Limitar por data


  • Fonte: Journal of Petroleum Science and Engineering. Unidade: EP

    Assuntos: PERFURAÇÃO DE POÇOS, PETRÓLEO, REDES NEURAIS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AGOSTINI, Cristiano Eduardo e PINTO, Marcio Augusto Sampaio. Probabilistic Neural Network with Bayesian-based, spectral torque imaging and Deep Convolutional Autoencoder for PDC bit wear monitoring. Journal of Petroleum Science and Engineering, v. 193, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.petrol.2020.1074342. Acesso em: 08 nov. 2025.
    • APA

      Agostini, C. E., & Pinto, M. A. S. (2020). Probabilistic Neural Network with Bayesian-based, spectral torque imaging and Deep Convolutional Autoencoder for PDC bit wear monitoring. Journal of Petroleum Science and Engineering, 193. doi:10.1016/j.petrol.2020.1074342
    • NLM

      Agostini CE, Pinto MAS. Probabilistic Neural Network with Bayesian-based, spectral torque imaging and Deep Convolutional Autoencoder for PDC bit wear monitoring [Internet]. Journal of Petroleum Science and Engineering. 2020 ; 193[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.petrol.2020.1074342
    • Vancouver

      Agostini CE, Pinto MAS. Probabilistic Neural Network with Bayesian-based, spectral torque imaging and Deep Convolutional Autoencoder for PDC bit wear monitoring [Internet]. Journal of Petroleum Science and Engineering. 2020 ; 193[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.petrol.2020.1074342

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025