Filtros : "Journal of Dynamics and Differential Equations" "Universidade Federal de São Carlos" Limpar

Filtros



Limitar por data


  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLUZI, Maykel et al. Long-time behavior for semilinear equation with time-dependent and almost sectorial linear operator. Journal of Dynamics and Differential Equations, v. 37, n. 3, p. 2565-2600, 2025Tradução . . Disponível em: https://doi.org/10.1007/s10884-024-10378-3. Acesso em: 09 nov. 2025.
    • APA

      Belluzi, M., Caraballo, T., Nascimento, M. J. D., & Schiabel, K. (2025). Long-time behavior for semilinear equation with time-dependent and almost sectorial linear operator. Journal of Dynamics and Differential Equations, 37( 3), 2565-2600. doi:10.1007/s10884-024-10378-3
    • NLM

      Belluzi M, Caraballo T, Nascimento MJD, Schiabel K. Long-time behavior for semilinear equation with time-dependent and almost sectorial linear operator [Internet]. Journal of Dynamics and Differential Equations. 2025 ; 37( 3): 2565-2600.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-024-10378-3
    • Vancouver

      Belluzi M, Caraballo T, Nascimento MJD, Schiabel K. Long-time behavior for semilinear equation with time-dependent and almost sectorial linear operator [Internet]. Journal of Dynamics and Differential Equations. 2025 ; 37( 3): 2565-2600.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-024-10378-3
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assuntos: TEORIA QUALITATIVA, EQUAÇÕES NÃO LINEARES, SISTEMAS NÃO LINEARES

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARTÉS, Joan C e OLIVEIRA, Regilene Delazari dos Santos e REZENDE, Alex Carlucci. Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes. Journal of Dynamics and Differential Equations, v. 33, n. 4, p. 1779-1821, 2021Tradução . . Disponível em: https://doi.org/10.1007/s10884-020-09871-2. Acesso em: 09 nov. 2025.
    • APA

      Artés, J. C., Oliveira, R. D. dos S., & Rezende, A. C. (2021). Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes. Journal of Dynamics and Differential Equations, 33( 4), 1779-1821. doi:10.1007/s10884-020-09871-2
    • NLM

      Artés JC, Oliveira RD dos S, Rezende AC. Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes [Internet]. Journal of Dynamics and Differential Equations. 2021 ; 33( 4): 1779-1821.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-020-09871-2
    • Vancouver

      Artés JC, Oliveira RD dos S, Rezende AC. Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes [Internet]. Journal of Dynamics and Differential Equations. 2021 ; 33( 4): 1779-1821.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-020-09871-2

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025