Filtros : "Journal of Dynamics and Differential Equations" "EQUAÇÕES DIFERENCIAIS ORDINÁRIAS" Limpar

Filtros



Limitar por data


  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assuntos: ATRATORES, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES IMPULSIVAS, SISTEMAS DINÂMICOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e UZAL, José Manuel. Global attractors for a class of discrete dynamical systems. Journal of Dynamics and Differential Equations, v. 37, p. 241–2265, 2025Tradução . . Disponível em: https://doi.org/10.1007/s10884-024-10356-9. Acesso em: 09 nov. 2025.
    • APA

      Bonotto, E. de M., & Uzal, J. M. (2025). Global attractors for a class of discrete dynamical systems. Journal of Dynamics and Differential Equations, 37, 241–2265. doi:10.1007/s10884-024-10356-9
    • NLM

      Bonotto E de M, Uzal JM. Global attractors for a class of discrete dynamical systems [Internet]. Journal of Dynamics and Differential Equations. 2025 ; 37 241–2265.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-024-10356-9
    • Vancouver

      Bonotto E de M, Uzal JM. Global attractors for a class of discrete dynamical systems [Internet]. Journal of Dynamics and Differential Equations. 2025 ; 37 241–2265.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-024-10356-9
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, DIMENSÃO INFINITA, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Hildebrando Munhoz e SOLA-MORALES, Joan. A new example on Lyapunov stability. Journal of Dynamics and Differential Equations, v. 36, p. S65-S75, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10884-021-09962-8. Acesso em: 09 nov. 2025.
    • APA

      Rodrigues, H. M., & Sola-Morales, J. (2024). A new example on Lyapunov stability. Journal of Dynamics and Differential Equations, 36, S65-S75. doi:10.1007/s10884-021-09962-8
    • NLM

      Rodrigues HM, Sola-Morales J. A new example on Lyapunov stability [Internet]. Journal of Dynamics and Differential Equations. 2024 ; 36 S65-S75.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-021-09962-8
    • Vancouver

      Rodrigues HM, Sola-Morales J. A new example on Lyapunov stability [Internet]. Journal of Dynamics and Differential Equations. 2024 ; 36 S65-S75.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-021-09962-8
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, ROBUSTEZ, DIMENSÃO INFINITA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Hildebrando Munhoz e CARABALLO, Tomás e NAKASSIMA, Guilherme Kenji. Robustness of exponential dichotomy in a class of generalised almost periodic linear differential equations in infinite dimensional Banach spaces. Journal of Dynamics and Differential Equations, v. 34, p. 2841-2865, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10884-020-09854-3. Acesso em: 09 nov. 2025.
    • APA

      Rodrigues, H. M., Caraballo, T., & Nakassima, G. K. (2022). Robustness of exponential dichotomy in a class of generalised almost periodic linear differential equations in infinite dimensional Banach spaces. Journal of Dynamics and Differential Equations, 34, 2841-2865. doi:10.1007/s10884-020-09854-3
    • NLM

      Rodrigues HM, Caraballo T, Nakassima GK. Robustness of exponential dichotomy in a class of generalised almost periodic linear differential equations in infinite dimensional Banach spaces [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34 2841-2865.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-020-09854-3
    • Vancouver

      Rodrigues HM, Caraballo T, Nakassima GK. Robustness of exponential dichotomy in a class of generalised almost periodic linear differential equations in infinite dimensional Banach spaces [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34 2841-2865.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-020-09854-3
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: IME

    Assuntos: TEORIA ESPECTRAL, TOPOLOGIA ALGÉBRICA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENEVIERI, Pierluigi et al. A degree associated to linear eigenvalue problems in Hilbert spaces and applications to nonlinear spectral theory. Journal of Dynamics and Differential Equations, v. 34, n. 1, p. 555–581, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10884-020-09921-9. Acesso em: 09 nov. 2025.
    • APA

      Benevieri, P., Calamai, A., Furi, M., & Pera, M. P. (2022). A degree associated to linear eigenvalue problems in Hilbert spaces and applications to nonlinear spectral theory. Journal of Dynamics and Differential Equations, 34( 1), 555–581. doi:10.1007/s10884-020-09921-9
    • NLM

      Benevieri P, Calamai A, Furi M, Pera MP. A degree associated to linear eigenvalue problems in Hilbert spaces and applications to nonlinear spectral theory [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34( 1): 555–581.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-020-09921-9
    • Vancouver

      Benevieri P, Calamai A, Furi M, Pera MP. A degree associated to linear eigenvalue problems in Hilbert spaces and applications to nonlinear spectral theory [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34( 1): 555–581.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-020-09921-9
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assuntos: ATRATORES, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello et al. Upper and lower semicontinuity of impulsive cocycle attractors for impulsive nonautonomous systems. Journal of Dynamics and Differential Equations, v. 33, p. 463-487, 2021Tradução . . Disponível em: https://doi.org/10.1007/s10884-019-09815-5. Acesso em: 09 nov. 2025.
    • APA

      Bonotto, E. de M., Bortolan, M. C., Caraballo, T., & Collegari, R. (2021). Upper and lower semicontinuity of impulsive cocycle attractors for impulsive nonautonomous systems. Journal of Dynamics and Differential Equations, 33, 463-487. doi:10.1007/s10884-019-09815-5
    • NLM

      Bonotto E de M, Bortolan MC, Caraballo T, Collegari R. Upper and lower semicontinuity of impulsive cocycle attractors for impulsive nonautonomous systems [Internet]. Journal of Dynamics and Differential Equations. 2021 ; 33 463-487.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-019-09815-5
    • Vancouver

      Bonotto E de M, Bortolan MC, Caraballo T, Collegari R. Upper and lower semicontinuity of impulsive cocycle attractors for impulsive nonautonomous systems [Internet]. Journal of Dynamics and Differential Equations. 2021 ; 33 463-487.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-019-09815-5
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, ESTABILIDADE DE SISTEMAS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e FEDERSON, Marcia e SANTOS, Fabio L. Robustness of exponential dichotomies for generalized ordinary differential equations. Journal of Dynamics and Differential Equations, v. 32, p. 2021-2060, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10884-019-09801-x. Acesso em: 09 nov. 2025.
    • APA

      Bonotto, E. de M., Federson, M., & Santos, F. L. (2020). Robustness of exponential dichotomies for generalized ordinary differential equations. Journal of Dynamics and Differential Equations, 32, 2021-2060. doi:10.1007/s10884-019-09801-x
    • NLM

      Bonotto E de M, Federson M, Santos FL. Robustness of exponential dichotomies for generalized ordinary differential equations [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32 2021-2060.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-019-09801-x
    • Vancouver

      Bonotto E de M, Federson M, Santos FL. Robustness of exponential dichotomies for generalized ordinary differential equations [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32 2021-2060.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-019-09801-x
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, FUNÇÕES DE UMA VARIÁVEL COMPLEXA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEDERSON, Marcia et al. Measure neutral functional differential equations as generalized ODEs. Journal of Dynamics and Differential Equations, v. 31, n. 1, p. 207-236, 2019Tradução . . Disponível em: https://doi.org/10.1007/s10884-018-9682-y. Acesso em: 09 nov. 2025.
    • APA

      Federson, M., Frasson, M. V. S., Mesquita, J. G., & Tacuri, P. H. (2019). Measure neutral functional differential equations as generalized ODEs. Journal of Dynamics and Differential Equations, 31( 1), 207-236. doi:10.1007/s10884-018-9682-y
    • NLM

      Federson M, Frasson MVS, Mesquita JG, Tacuri PH. Measure neutral functional differential equations as generalized ODEs [Internet]. Journal of Dynamics and Differential Equations. 2019 ; 31( 1): 207-236.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-018-9682-y
    • Vancouver

      Federson M, Frasson MVS, Mesquita JG, Tacuri PH. Measure neutral functional differential equations as generalized ODEs [Internet]. Journal of Dynamics and Differential Equations. 2019 ; 31( 1): 207-236.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-018-9682-y
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assuntos: SINGULARIDADES, TEORIA QUALITATIVA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DUKARIC, Masa e OLIVEIRA, Regilene Delazari dos Santos e ROMANOVSKI, Valery G. Local integrability and linearizability of a (1 : -1 : -1) resonant quadratic system. Journal of Dynamics and Differential Equations, v. 29, n. Ju 2017, p. 597-613, 2017Tradução . . Disponível em: https://doi.org/10.1007/s10884-015-9486-2. Acesso em: 09 nov. 2025.
    • APA

      Dukaric, M., Oliveira, R. D. dos S., & Romanovski, V. G. (2017). Local integrability and linearizability of a (1 : -1 : -1) resonant quadratic system. Journal of Dynamics and Differential Equations, 29( Ju 2017), 597-613. doi:10.1007/s10884-015-9486-2
    • NLM

      Dukaric M, Oliveira RD dos S, Romanovski VG. Local integrability and linearizability of a (1 : -1 : -1) resonant quadratic system [Internet]. Journal of Dynamics and Differential Equations. 2017 ; 29( Ju 2017): 597-613.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-015-9486-2
    • Vancouver

      Dukaric M, Oliveira RD dos S, Romanovski VG. Local integrability and linearizability of a (1 : -1 : -1) resonant quadratic system [Internet]. Journal of Dynamics and Differential Equations. 2017 ; 29( Ju 2017): 597-613.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-015-9486-2
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: IME

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAGÃO, Gleiciane da Silva e PEREIRA, Antônio Luiz e PEREIRA, Marcone Corrêa. Attractors for a nonlinear parabolic problem with terms concentrating on the boundary. Journal of Dynamics and Differential Equations, v. 26, n. 4, p. 871-888, 2014Tradução . . Disponível em: https://doi.org/10.1007/s10884-014-9412-z. Acesso em: 09 nov. 2025.
    • APA

      Aragão, G. da S., Pereira, A. L., & Pereira, M. C. (2014). Attractors for a nonlinear parabolic problem with terms concentrating on the boundary. Journal of Dynamics and Differential Equations, 26( 4), 871-888. doi:10.1007/s10884-014-9412-z
    • NLM

      Aragão G da S, Pereira AL, Pereira MC. Attractors for a nonlinear parabolic problem with terms concentrating on the boundary [Internet]. Journal of Dynamics and Differential Equations. 2014 ; 26( 4): 871-888.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-014-9412-z
    • Vancouver

      Aragão G da S, Pereira AL, Pereira MC. Attractors for a nonlinear parabolic problem with terms concentrating on the boundary [Internet]. Journal of Dynamics and Differential Equations. 2014 ; 26( 4): 871-888.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-014-9412-z
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARRIETA, José M et al. Continuity of dynamical structures for nonautonomous evolution equations under singular perturbations. Journal of Dynamics and Differential Equations, v. 24, n. 3, p. 427-481, 2012Tradução . . Disponível em: https://doi.org/10.1007/s10884-012-9269-y. Acesso em: 09 nov. 2025.
    • APA

      Arrieta, J. M., Carvalho, A. N. de, Langa, J. A., & Rodriguez-Bernal, A. (2012). Continuity of dynamical structures for nonautonomous evolution equations under singular perturbations. Journal of Dynamics and Differential Equations, 24( 3), 427-481. doi:10.1007/s10884-012-9269-y
    • NLM

      Arrieta JM, Carvalho AN de, Langa JA, Rodriguez-Bernal A. Continuity of dynamical structures for nonautonomous evolution equations under singular perturbations [Internet]. Journal of Dynamics and Differential Equations. 2012 ; 24( 3): 427-481.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-012-9269-y
    • Vancouver

      Arrieta JM, Carvalho AN de, Langa JA, Rodriguez-Bernal A. Continuity of dynamical structures for nonautonomous evolution equations under singular perturbations [Internet]. Journal of Dynamics and Differential Equations. 2012 ; 24( 3): 427-481.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-012-9269-y
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Hildebrando Munhoz e SOLA-MORALES, Joan. On the Hartman-Grobman theorem with parameters. Journal of Dynamics and Differential Equations, v. 22, n. 3, p. 473-489, 2010Tradução . . Disponível em: https://doi.org/10.1007/s10884-010-9160-7. Acesso em: 09 nov. 2025.
    • APA

      Rodrigues, H. M., & Sola-Morales, J. (2010). On the Hartman-Grobman theorem with parameters. Journal of Dynamics and Differential Equations, 22( 3), 473-489. doi:10.1007/s10884-010-9160-7
    • NLM

      Rodrigues HM, Sola-Morales J. On the Hartman-Grobman theorem with parameters [Internet]. Journal of Dynamics and Differential Equations. 2010 ; 22( 3): 473-489.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-010-9160-7
    • Vancouver

      Rodrigues HM, Sola-Morales J. On the Hartman-Grobman theorem with parameters [Internet]. Journal of Dynamics and Differential Equations. 2010 ; 22( 3): 473-489.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-010-9160-7
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRUSCHI, Simone Mazzini et al. Uniform exponential dichotomy and continuity of attractors for singularly perturbed damped wave equations. Journal of Dynamics and Differential Equations, v. 18, n. 3, p. 767-814, 2006Tradução . . Disponível em: http://www.springerlink.com.w10077.dotlib.com.br/content/08872646h4546298/fulltext.pdf. Acesso em: 09 nov. 2025.
    • APA

      Bruschi, S. M., Cholewa, J. W., Carvalho, A. N. de, & Dlotko, T. (2006). Uniform exponential dichotomy and continuity of attractors for singularly perturbed damped wave equations. Journal of Dynamics and Differential Equations, 18( 3), 767-814. Recuperado de http://www.springerlink.com.w10077.dotlib.com.br/content/08872646h4546298/fulltext.pdf
    • NLM

      Bruschi SM, Cholewa JW, Carvalho AN de, Dlotko T. Uniform exponential dichotomy and continuity of attractors for singularly perturbed damped wave equations [Internet]. Journal of Dynamics and Differential Equations. 2006 ; 18( 3): 767-814.[citado 2025 nov. 09 ] Available from: http://www.springerlink.com.w10077.dotlib.com.br/content/08872646h4546298/fulltext.pdf
    • Vancouver

      Bruschi SM, Cholewa JW, Carvalho AN de, Dlotko T. Uniform exponential dichotomy and continuity of attractors for singularly perturbed damped wave equations [Internet]. Journal of Dynamics and Differential Equations. 2006 ; 18( 3): 767-814.[citado 2025 nov. 09 ] Available from: http://www.springerlink.com.w10077.dotlib.com.br/content/08872646h4546298/fulltext.pdf
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Hildebrando Munhoz e SOLÀ-MORALES, J. Invertible contractions and asymptotically stable ODE’S that are not 'C POT. 1'-linearizable. Journal of Dynamics and Differential Equations, v. 18, n. 4, p. 961-973, 2006Tradução . . Disponível em: https://doi.org/10.1007/s10884-006-9050-1. Acesso em: 09 nov. 2025.
    • APA

      Rodrigues, H. M., & Solà-Morales, J. (2006). Invertible contractions and asymptotically stable ODE’S that are not 'C POT. 1'-linearizable. Journal of Dynamics and Differential Equations, 18( 4), 961-973. doi:10.1007/s10884-006-9050-1
    • NLM

      Rodrigues HM, Solà-Morales J. Invertible contractions and asymptotically stable ODE’S that are not 'C POT. 1'-linearizable [Internet]. Journal of Dynamics and Differential Equations. 2006 ; 18( 4): 961-973.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-006-9050-1
    • Vancouver

      Rodrigues HM, Solà-Morales J. Invertible contractions and asymptotically stable ODE’S that are not 'C POT. 1'-linearizable [Internet]. Journal of Dynamics and Differential Equations. 2006 ; 18( 4): 961-973.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-006-9050-1
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e CUMINATO, José Alberto. Reaction-difusion problems in cell tissues. Journal of Dynamics and Differential Equations, v. 9, n. 1, p. 93-131, 1997Tradução . . Disponível em: https://doi.org/10.1007/bf02219054. Acesso em: 09 nov. 2025.
    • APA

      Carvalho, A. N. de, & Cuminato, J. A. (1997). Reaction-difusion problems in cell tissues. Journal of Dynamics and Differential Equations, 9( 1), 93-131. doi:10.1007/bf02219054
    • NLM

      Carvalho AN de, Cuminato JA. Reaction-difusion problems in cell tissues [Internet]. Journal of Dynamics and Differential Equations. 1997 ; 9( 1): 93-131.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/bf02219054
    • Vancouver

      Carvalho AN de, Cuminato JA. Reaction-difusion problems in cell tissues [Internet]. Journal of Dynamics and Differential Equations. 1997 ; 9( 1): 93-131.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/bf02219054
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: IME

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, TEORIA QUALITATIVA, ANÁLISE GLOBAL

    Acesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RAGAZZO, Clodoaldo Grotta. Chaos and integrability in a nonlinear wave equation. Journal of Dynamics and Differential Equations, v. 6, n. 1, p. 227-244, 1994Tradução . . Disponível em: https://doi.org/10.1007/bf02219194. Acesso em: 09 nov. 2025.
    • APA

      Ragazzo, C. G. (1994). Chaos and integrability in a nonlinear wave equation. Journal of Dynamics and Differential Equations, 6( 1), 227-244. doi:10.1007/bf02219194
    • NLM

      Ragazzo CG. Chaos and integrability in a nonlinear wave equation [Internet]. Journal of Dynamics and Differential Equations. 1994 ; 6( 1): 227-244.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/bf02219194
    • Vancouver

      Ragazzo CG. Chaos and integrability in a nonlinear wave equation [Internet]. Journal of Dynamics and Differential Equations. 1994 ; 6( 1): 227-244.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/bf02219194
  • Fonte: Journal of Dynamics and Differential Equations. Unidades: IME, IF

    Assuntos: FÍSICA MATEMÁTICA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, TEORIA QUALITATIVA, ANÁLISE GLOBAL, TEORIA DA BIFURCAÇÃO, SINGULARIDADES

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RAGAZZO, Clodoaldo Grotta e MALTA, Coraci Pereira. Singularity structure of the hopf bifurcation surface of a differential equation with two delays. Journal of Dynamics and Differential Equations, v. 4 , n. 4 , p. 617-650, 1992Tradução . . Disponível em: https://doi.org/10.1007%2FBF0104826. Acesso em: 09 nov. 2025.
    • APA

      Ragazzo, C. G., & Malta, C. P. (1992). Singularity structure of the hopf bifurcation surface of a differential equation with two delays. Journal of Dynamics and Differential Equations, 4 ( 4 ), 617-650. doi:10.1007%2FBF0104826
    • NLM

      Ragazzo CG, Malta CP. Singularity structure of the hopf bifurcation surface of a differential equation with two delays [Internet]. Journal of Dynamics and Differential Equations. 1992 ; 4 ( 4 ): 617-650.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007%2FBF0104826
    • Vancouver

      Ragazzo CG, Malta CP. Singularity structure of the hopf bifurcation surface of a differential equation with two delays [Internet]. Journal of Dynamics and Differential Equations. 1992 ; 4 ( 4 ): 617-650.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007%2FBF0104826

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025