Filtros : "Communications in Nonlinear Science and Numerical Simulation" "Holanda" Removido: "SISTEMAS DINÂMICOS" Limpar

Filtros



Refine with date range


  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES, SISTEMAS DISSIPATIVO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AZEVEDO, Vinícius Tavares e LÓPEZ-LÁZARO, Heraclio e TAKAESSU JUNIOR, Carlos Roberto. Existence and continuity of pullback exponential attractors for a family of non-classical reaction-diffusion equations. Communications in Nonlinear Science and Numerical Simulation, v. 152, n. Ja 2026, p. 1-12, 2026Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2025.109198. Acesso em: 05 nov. 2025.
    • APA

      Azevedo, V. T., López-Lázaro, H., & Takaessu Junior, C. R. (2026). Existence and continuity of pullback exponential attractors for a family of non-classical reaction-diffusion equations. Communications in Nonlinear Science and Numerical Simulation, 152( Ja 2026), 1-12. doi:10.1016/j.cnsns.2025.109198
    • NLM

      Azevedo VT, López-Lázaro H, Takaessu Junior CR. Existence and continuity of pullback exponential attractors for a family of non-classical reaction-diffusion equations [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2026 ; 152( Ja 2026): 1-12.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2025.109198
    • Vancouver

      Azevedo VT, López-Lázaro H, Takaessu Junior CR. Existence and continuity of pullback exponential attractors for a family of non-classical reaction-diffusion equations [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2026 ; 152( Ja 2026): 1-12.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2025.109198
  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidade: IFSC

    Subjects: FÍSICA COMPUTACIONAL, AUTÔMATOS CELULARES, TEORIA DA INFORMAÇÃO E COMUNICAÇÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROLLIER, Michiel et al. A comprehensive taxonomy of cellular automata. Communications in Nonlinear Science and Numerical Simulation, v. 140, n. Ja 2025, p. 108362-1-108362-31, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2024.108362. Acesso em: 05 nov. 2025.
    • APA

      Rollier, M., Zielinski, K. M. C., Daly, A. J., Bruno, O. M., & Baetens, J. M. (2025). A comprehensive taxonomy of cellular automata. Communications in Nonlinear Science and Numerical Simulation, 140( Ja 2025), 108362-1-108362-31. doi:10.1016/j.cnsns.2024.108362
    • NLM

      Rollier M, Zielinski KMC, Daly AJ, Bruno OM, Baetens JM. A comprehensive taxonomy of cellular automata [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2025 ; 140( Ja 2025): 108362-1-108362-31.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2024.108362
    • Vancouver

      Rollier M, Zielinski KMC, Daly AJ, Bruno OM, Baetens JM. A comprehensive taxonomy of cellular automata [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2025 ; 140( Ja 2025): 108362-1-108362-31.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2024.108362
  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidade: IME

    Assunto: EQUAÇÕES INTEGRO-DIFERENCIAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      STEINDORF, Vanessa et al. Symmetry in a multi-strain epidemiological model with distributed delay as a general cross-protection period and disease enhancement factor. Communications in Nonlinear Science and Numerical Simulation, v. 128, n. artigo 107663, p. 1-21, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2023.107663. Acesso em: 05 nov. 2025.
    • APA

      Steindorf, V., Oliva, S. M., Stollenwerk, N., & Aguiar, M. (2024). Symmetry in a multi-strain epidemiological model with distributed delay as a general cross-protection period and disease enhancement factor. Communications in Nonlinear Science and Numerical Simulation, 128( artigo 107663), 1-21. doi:10.1016/j.cnsns.2023.107663
    • NLM

      Steindorf V, Oliva SM, Stollenwerk N, Aguiar M. Symmetry in a multi-strain epidemiological model with distributed delay as a general cross-protection period and disease enhancement factor [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2024 ; 128( artigo 107663): 1-21.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2023.107663
    • Vancouver

      Steindorf V, Oliva SM, Stollenwerk N, Aguiar M. Symmetry in a multi-strain epidemiological model with distributed delay as a general cross-protection period and disease enhancement factor [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2024 ; 128( artigo 107663): 1-21.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2023.107663
  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidade: IF

    Subjects: SISTEMAS HAMILTONIANOS, CAOS (SISTEMAS DINÂMICOS)

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LAZAROTTO, Matheus Jean e CALDAS, Iberê Luiz e ELSKENS, Yves. Diffusion transitions in a 2D periodic lattice. Communications in Nonlinear Science and Numerical Simulation, v. 112, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2022.106525. Acesso em: 05 nov. 2025.
    • APA

      Lazarotto, M. J., Caldas, I. L., & Elskens, Y. (2022). Diffusion transitions in a 2D periodic lattice. Communications in Nonlinear Science and Numerical Simulation, 112. doi:10.1016/j.cnsns.2022.106525
    • NLM

      Lazarotto MJ, Caldas IL, Elskens Y. Diffusion transitions in a 2D periodic lattice [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2022 ; 112[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2022.106525
    • Vancouver

      Lazarotto MJ, Caldas IL, Elskens Y. Diffusion transitions in a 2D periodic lattice [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2022 ; 112[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2022.106525
  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidade: IF

    Subjects: FÍSICA MATEMÁTICA, BIOFÍSICA, GLIOMA, QUIMIOTERAPIA, NEOPLASIAS CEREBRAIS, EQUAÇÕES DIFERENCIAIS DA FÍSICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TROBIA, José et al. Mathematical model of brain tumour growth with drug resistance. Communications in Nonlinear Science and Numerical Simulation, v. 103, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2021.106013. Acesso em: 05 nov. 2025.
    • APA

      Trobia, J., Tian, K., Batista, A., Grebogi, C., Ren, H. -P., Santos, M. S., et al. (2021). Mathematical model of brain tumour growth with drug resistance. Communications in Nonlinear Science and Numerical Simulation, 103. doi:10.1016/j.cnsns.2021.106013
    • NLM

      Trobia J, Tian K, Batista A, Grebogi C, Ren H-P, Santos MS, Protachevicz RP, Borges FS, Szezech JD, Viana RL, Caldas IL, Iarosz KC. Mathematical model of brain tumour growth with drug resistance [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2021 ; 103[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2021.106013
    • Vancouver

      Trobia J, Tian K, Batista A, Grebogi C, Ren H-P, Santos MS, Protachevicz RP, Borges FS, Szezech JD, Viana RL, Caldas IL, Iarosz KC. Mathematical model of brain tumour growth with drug resistance [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2021 ; 103[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2021.106013
  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidade: IF

    Subjects: BIOFÍSICA, REDES NEURAIS, PLASTICIDADE NEURONAL, SINAPSE, NEUROTRANSMISSORES

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LAMEU, Ewandson Luiz et al. Short-term and spike-timing-dependent plasticity facilitate the formation of modular neural networks. Communications in Nonlinear Science and Numerical Simulation, v. 96, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2020.105689. Acesso em: 05 nov. 2025.
    • APA

      Lameu, E. L., Borges, F. S., Iarosz, K., Protachevicz, R. P., Antonopoulos, C. G., Macau, E. E. N., & Batista, A. (2021). Short-term and spike-timing-dependent plasticity facilitate the formation of modular neural networks. Communications in Nonlinear Science and Numerical Simulation, 96. doi:10.1016/j.cnsns.2020.105689
    • NLM

      Lameu EL, Borges FS, Iarosz K, Protachevicz RP, Antonopoulos CG, Macau EEN, Batista A. Short-term and spike-timing-dependent plasticity facilitate the formation of modular neural networks [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2021 ; 96[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2020.105689
    • Vancouver

      Lameu EL, Borges FS, Iarosz K, Protachevicz RP, Antonopoulos CG, Macau EEN, Batista A. Short-term and spike-timing-dependent plasticity facilitate the formation of modular neural networks [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2021 ; 96[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2020.105689
  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidades: IFSC, ICMC, FFCLRP

    Subjects: REDES COMPLEXAS, ESPALHAMENTO, BOATO, DIFUSÃO DA INFORMAÇÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VEGA-OLIVEROS, Didier Augusto e COSTA, Luciano da Fontoura e RODRIGUES, Francisco Aparecido. Influence maximization by rumor spreading on correlated networks through community identification. Communications in Nonlinear Science and Numerical Simulation, v. 83, p. 105094-1-105094-13, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2019.105094. Acesso em: 05 nov. 2025.
    • APA

      Vega-Oliveros, D. A., Costa, L. da F., & Rodrigues, F. A. (2020). Influence maximization by rumor spreading on correlated networks through community identification. Communications in Nonlinear Science and Numerical Simulation, 83, 105094-1-105094-13. doi:10.1016/j.cnsns.2019.105094
    • NLM

      Vega-Oliveros DA, Costa L da F, Rodrigues FA. Influence maximization by rumor spreading on correlated networks through community identification [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2020 ; 83 105094-1-105094-13.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2019.105094
    • Vancouver

      Vega-Oliveros DA, Costa L da F, Rodrigues FA. Influence maximization by rumor spreading on correlated networks through community identification [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2020 ; 83 105094-1-105094-13.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2019.105094
  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidades: IME, IF

    Assunto: DINÂMICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COSTA, Diogo Ricardo da et al. Tilted-hat mushroom billiards: Web-like hierarchical mixed phase space. Communications in Nonlinear Science and Numerical Simulation, v. 91, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2020.105440. Acesso em: 05 nov. 2025.
    • APA

      Costa, D. R. da, Silva, M. P., Méndez-Bermúdez, J. A., Iarosz, K. C., Szezech Jr., J. D., & Batista, A. M. (2020). Tilted-hat mushroom billiards: Web-like hierarchical mixed phase space. Communications in Nonlinear Science and Numerical Simulation, 91. doi:10.1016/j.cnsns.2020.105440
    • NLM

      Costa DR da, Silva MP, Méndez-Bermúdez JA, Iarosz KC, Szezech Jr. JD, Batista AM. Tilted-hat mushroom billiards: Web-like hierarchical mixed phase space [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2020 ; 91[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2020.105440
    • Vancouver

      Costa DR da, Silva MP, Méndez-Bermúdez JA, Iarosz KC, Szezech Jr. JD, Batista AM. Tilted-hat mushroom billiards: Web-like hierarchical mixed phase space [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2020 ; 91[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2020.105440
  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidade: FZEA

    Subjects: EPILEPSIA, ELETROENCEFALOGRAFIA, MEMÓRIA, DIMENSÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DAVID, Sérgio Adriani et al. A combined measure to differentiate EEG signals using fractal dimension and MFDFA-Hurst. Communications in Nonlinear Science and Numerical Simulation, v. 84, p. 1-13, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2020.105170. Acesso em: 05 nov. 2025.
    • APA

      David, S. A., Machado, J. A. T., Inácio Junior, C. M. C., & Valentim Junior, C. A. (2020). A combined measure to differentiate EEG signals using fractal dimension and MFDFA-Hurst. Communications in Nonlinear Science and Numerical Simulation, 84, 1-13. doi:10.1016/j.cnsns.2020.105170
    • NLM

      David SA, Machado JAT, Inácio Junior CMC, Valentim Junior CA. A combined measure to differentiate EEG signals using fractal dimension and MFDFA-Hurst [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2020 ; 84 1-13.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2020.105170
    • Vancouver

      David SA, Machado JAT, Inácio Junior CMC, Valentim Junior CA. A combined measure to differentiate EEG signals using fractal dimension and MFDFA-Hurst [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2020 ; 84 1-13.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2020.105170
  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidade: IF

    Assunto: CROMODINÂMICA QUÂNTICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FOGAÇA, D A et al. Evolution of non-stationary pulses in a cold magnetized quark-gluon plasma. Communications in Nonlinear Science and Numerical Simulation, v. 83, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2019.105144. Acesso em: 05 nov. 2025.
    • APA

      Fogaça, D. A., Fariello, R. F., Navarra, F. S., & Stepanyants, Y. A. (2020). Evolution of non-stationary pulses in a cold magnetized quark-gluon plasma. Communications in Nonlinear Science and Numerical Simulation, 83. doi:10.1016/j.cnsns.2019.105144
    • NLM

      Fogaça DA, Fariello RF, Navarra FS, Stepanyants YA. Evolution of non-stationary pulses in a cold magnetized quark-gluon plasma [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2020 ; 83[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2019.105144
    • Vancouver

      Fogaça DA, Fariello RF, Navarra FS, Stepanyants YA. Evolution of non-stationary pulses in a cold magnetized quark-gluon plasma [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2020 ; 83[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2019.105144
  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidade: IF

    Subjects: NEOPLASIAS, QUIMIOMETRIA, PROTOCOLOS CLÍNICOS, BIOFÍSICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LÓPEZ, Álvaro G. et al. The role of dose density in combination cancer chemotherapy. Communications in Nonlinear Science and Numerical Simulation, v. 79, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2019.104918. Acesso em: 05 nov. 2025.
    • APA

      López, Á. G., Iarosz, K. C., Batista, A. M., Seoane, J. M., & Viana, R. L. (2019). The role of dose density in combination cancer chemotherapy. Communications in Nonlinear Science and Numerical Simulation, 79. doi:10.1016/j.cnsns.2019.104918
    • NLM

      López ÁG, Iarosz KC, Batista AM, Seoane JM, Viana RL. The role of dose density in combination cancer chemotherapy [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2019 ; 79[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2019.104918
    • Vancouver

      López ÁG, Iarosz KC, Batista AM, Seoane JM, Viana RL. The role of dose density in combination cancer chemotherapy [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2019 ; 79[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2019.104918
  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidade: IF

    Assunto: QUIMIOTERAPIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LÓPEZ, Alvaro G et al. Nonlinear cancer chemotherapy: Modelling the Norton-Simon hypothesis. Communications in Nonlinear Science and Numerical Simulation, v. 70, p. 307-317, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2018.11.006. Acesso em: 05 nov. 2025.
    • APA

      López, A. G., Iarosz, K. C., Batista, A. M., Seoane, J. M., Viana, R. L., & Sanjuan, M. A. F. (2019). Nonlinear cancer chemotherapy: Modelling the Norton-Simon hypothesis. Communications in Nonlinear Science and Numerical Simulation, 70, 307-317. doi:10.1016/j.cnsns.2018.11.006
    • NLM

      López AG, Iarosz KC, Batista AM, Seoane JM, Viana RL, Sanjuan MAF. Nonlinear cancer chemotherapy: Modelling the Norton-Simon hypothesis [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2019 ; 70 307-317.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2018.11.006
    • Vancouver

      López AG, Iarosz KC, Batista AM, Seoane JM, Viana RL, Sanjuan MAF. Nonlinear cancer chemotherapy: Modelling the Norton-Simon hypothesis [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2019 ; 70 307-317.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2018.11.006
  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidade: IF

    Assunto: HIDRODINÂMICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FOGAÇA, David Augaitis e SANCHES JUNIOR, Samuel Mendes e NAVARRA, Fernando Silveira. Nonlinear waves in magnetized quark matter and the reduced Ostrovsky equation. Communications in Nonlinear Science and Numerical Simulation, v. 66, p. 208-215, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2018.06.027. Acesso em: 05 nov. 2025.
    • APA

      Fogaça, D. A., Sanches Junior, S. M., & Navarra, F. S. (2019). Nonlinear waves in magnetized quark matter and the reduced Ostrovsky equation. Communications in Nonlinear Science and Numerical Simulation, 66, 208-215. doi:10.1016/j.cnsns.2018.06.027
    • NLM

      Fogaça DA, Sanches Junior SM, Navarra FS. Nonlinear waves in magnetized quark matter and the reduced Ostrovsky equation [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2019 ;66 208-215.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2018.06.027
    • Vancouver

      Fogaça DA, Sanches Junior SM, Navarra FS. Nonlinear waves in magnetized quark matter and the reduced Ostrovsky equation [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2019 ;66 208-215.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2018.06.027
  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidade: IF

    Subjects: FÍSICA DE PLASMAS, DINÂMICA

    Versão PublicadaAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PALMERO, Matheus S. et al. Ensemble separation and stickiness influence in a driven stadium-like billiard: a lyapunov exponents analysis. Communications in Nonlinear Science and Numerical Simulation, v. 65, p. 248-259, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2018.05.024. Acesso em: 05 nov. 2025.
    • APA

      Palmero, M. S., Livorati, A. L. P., Leonel, E. D., & Caldas, I. L. (2018). Ensemble separation and stickiness influence in a driven stadium-like billiard: a lyapunov exponents analysis. Communications in Nonlinear Science and Numerical Simulation, 65, 248-259. doi:10.1016/j.cnsns.2018.05.024
    • NLM

      Palmero MS, Livorati ALP, Leonel ED, Caldas IL. Ensemble separation and stickiness influence in a driven stadium-like billiard: a lyapunov exponents analysis [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2018 ; 65 248-259.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2018.05.024
    • Vancouver

      Palmero MS, Livorati ALP, Leonel ED, Caldas IL. Ensemble separation and stickiness influence in a driven stadium-like billiard: a lyapunov exponents analysis [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2018 ; 65 248-259.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2018.05.024
  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidade: IF

    Subjects: FÉRMIO, CAOS (SISTEMAS DINÂMICOS)

    PrivadoAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIVORATI, Andre L. P. et al. Investigation of stickiness influence in the anomalous transport and diffusion for a non-dissipative Fermi–Ulam model. Communications in Nonlinear Science and Numerical Simulation, v. fe 2017, p. 225-236, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2017.07.010. Acesso em: 05 nov. 2025.
    • APA

      Livorati, A. L. P., Palmero, M. S., Diaz, G., Leonel, E. D., Dettmann, C. P., & Caldas, I. L. (2017). Investigation of stickiness influence in the anomalous transport and diffusion for a non-dissipative Fermi–Ulam model. Communications in Nonlinear Science and Numerical Simulation, fe 2017, 225-236. doi:10.1016/j.cnsns.2017.07.010
    • NLM

      Livorati ALP, Palmero MS, Diaz G, Leonel ED, Dettmann CP, Caldas IL. Investigation of stickiness influence in the anomalous transport and diffusion for a non-dissipative Fermi–Ulam model [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2017 ; fe 2017 225-236.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2017.07.010
    • Vancouver

      Livorati ALP, Palmero MS, Diaz G, Leonel ED, Dettmann CP, Caldas IL. Investigation of stickiness influence in the anomalous transport and diffusion for a non-dissipative Fermi–Ulam model [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2017 ; fe 2017 225-236.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2017.07.010
  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidade: IF

    Subjects: FÍSICA DE PLASMAS, MECÂNICA DOS FLUÍDOS

    Versão PublicadaAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORGES, R. R. et al. Effects of the spike timing-dependent plasticity on the synchronisation in a random hodgkin–huxley neuronal network. Communications in Nonlinear Science and Numerical Simulation, v. 34, p. 12-22, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2015.10.005. Acesso em: 05 nov. 2025.
    • APA

      Borges, R. R., Borges, F. S., Lameu, E. L., Batista, A. M., Viana, R. L., Sanjuan, M. A. F., et al. (2016). Effects of the spike timing-dependent plasticity on the synchronisation in a random hodgkin–huxley neuronal network. Communications in Nonlinear Science and Numerical Simulation, 34, 12-22. doi:10.1016/j.cnsns.2015.10.005
    • NLM

      Borges RR, Borges FS, Lameu EL, Batista AM, Viana RL, Sanjuan MAF, Iarosz KC, Caldas IL. Effects of the spike timing-dependent plasticity on the synchronisation in a random hodgkin–huxley neuronal network [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2016 ; 34 12-22.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2015.10.005
    • Vancouver

      Borges RR, Borges FS, Lameu EL, Batista AM, Viana RL, Sanjuan MAF, Iarosz KC, Caldas IL. Effects of the spike timing-dependent plasticity on the synchronisation in a random hodgkin–huxley neuronal network [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2016 ; 34 12-22.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2015.10.005
  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidade: EESC

    Subjects: SISTEMAS NÃO LINEARES, AEROELASTICIDADE DE AERONAVES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VASCONCELLOS, Rui Marcos Grombone de et al. Grazing bifurcation in aeroelastic systems with freeplay nonlinearity. Communications in Nonlinear Science and Numerical Simulation, v. 19, n. 5, p. 1611-1625, 2014Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2013.09.022. Acesso em: 05 nov. 2025.
    • APA

      Vasconcellos, R. M. G. de, Abdelkefi, A., Hajj, M. R., & Marques, F. D. (2014). Grazing bifurcation in aeroelastic systems with freeplay nonlinearity. Communications in Nonlinear Science and Numerical Simulation, 19( 5), 1611-1625. doi:10.1016/j.cnsns.2013.09.022
    • NLM

      Vasconcellos RMG de, Abdelkefi A, Hajj MR, Marques FD. Grazing bifurcation in aeroelastic systems with freeplay nonlinearity [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2014 ; 19( 5): 1611-1625.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2013.09.022
    • Vancouver

      Vasconcellos RMG de, Abdelkefi A, Hajj MR, Marques FD. Grazing bifurcation in aeroelastic systems with freeplay nonlinearity [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2014 ; 19( 5): 1611-1625.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2013.09.022
  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidade: IF

    Subjects: PARTÍCULAS (FÍSICA NUCLEAR), QUARK, DINÂMICA DOS FLUÍDOS

    Versão PublicadaAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FOGACA, D. A e FERREIRA FILHO, L. G. e NAVARRA, Fernando Silveira. Kadomtsev–petviashvili equation in relativistic fluid dynamics. Communications in Nonlinear Science and Numerical Simulation, v. fe2013, n. 2, p. 221-235, 2013Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2012.07.006. Acesso em: 05 nov. 2025.
    • APA

      Fogaca, D. A., Ferreira Filho, L. G., & Navarra, F. S. (2013). Kadomtsev–petviashvili equation in relativistic fluid dynamics. Communications in Nonlinear Science and Numerical Simulation, fe2013( 2), 221-235. doi:10.1016/j.cnsns.2012.07.006
    • NLM

      Fogaca DA, Ferreira Filho LG, Navarra FS. Kadomtsev–petviashvili equation in relativistic fluid dynamics [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2013 ; fe2013( 2): 221-235.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2012.07.006
    • Vancouver

      Fogaca DA, Ferreira Filho LG, Navarra FS. Kadomtsev–petviashvili equation in relativistic fluid dynamics [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2013 ; fe2013( 2): 221-235.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2012.07.006
  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidade: ICMC

    Subjects: INTELIGÊNCIA ARTIFICIAL, OTIMIZAÇÃO COMBINATÓRIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROMERO, Roseli Aparecida Francelin et al. Locally oriented potential field for controlling multi-robots. Communications in Nonlinear Science and Numerical Simulation, v. 17, n. 12, p. 4664-4671, 2012Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2011.10.027. Acesso em: 05 nov. 2025.
    • APA

      Romero, R. A. F., Prestes, E., Idiart, M. A. P., & Faria, G. (2012). Locally oriented potential field for controlling multi-robots. Communications in Nonlinear Science and Numerical Simulation, 17( 12), 4664-4671. doi:10.1016/j.cnsns.2011.10.027
    • NLM

      Romero RAF, Prestes E, Idiart MAP, Faria G. Locally oriented potential field for controlling multi-robots [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2012 ; 17( 12): 4664-4671.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2011.10.027
    • Vancouver

      Romero RAF, Prestes E, Idiart MAP, Faria G. Locally oriented potential field for controlling multi-robots [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2012 ; 17( 12): 4664-4671.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2011.10.027
  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidade: IF

    Subjects: TOKAMAKS, MAGNETISMO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CALDAS, Iberê Luiz et al. Nontwist symplectic maps in tokamaks. Communications in Nonlinear Science and Numerical Simulation, v. 17, n. 5, p. 2021-2030, 2012Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2011.05.040. Acesso em: 05 nov. 2025.
    • APA

      Caldas, I. L., Viana, R. L., Roberto, M., Martins, C. G. L., Szezech Jr., J. D., Portela, J. S. E., et al. (2012). Nontwist symplectic maps in tokamaks. Communications in Nonlinear Science and Numerical Simulation, 17( 5), 2021-2030. doi:10.1016/j.cnsns.2011.05.040
    • NLM

      Caldas IL, Viana RL, Roberto M, Martins CGL, Szezech Jr. JD, Portela JSE, Fonseca J, Silva EJ da. Nontwist symplectic maps in tokamaks [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2012 ;17( 5): 2021-2030.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2011.05.040
    • Vancouver

      Caldas IL, Viana RL, Roberto M, Martins CGL, Szezech Jr. JD, Portela JSE, Fonseca J, Silva EJ da. Nontwist symplectic maps in tokamaks [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2012 ;17( 5): 2021-2030.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2011.05.040

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025