Filtros : "Communications in Nonlinear Science and Numerical Simulation" "Espanha" Removido: "CALDAS, IBERE LUIZ" Limpar

Filtros



Limitar por data


  • Fonte: Communications in Nonlinear Science and Numerical Simulation. Unidade: ICMC

    Assuntos: TEORIA QUALITATIVA, TEORIA DA BIFURCAÇÃO, SISTEMAS DINÂMICOS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CRUZ, Leonardo Pereira Costa da e OLIVEIRA, Regilene Delazari dos Santos e TORREGROSA, Joan. Limit cycles in piecewise quadratic Kolmogorov systems. Communications in Nonlinear Science and Numerical Simulation, v. 152, n. Ja 2026, p. 1-16, 2026Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2025.109285. Acesso em: 05 nov. 2025.
    • APA

      Cruz, L. P. C. da, Oliveira, R. D. dos S., & Torregrosa, J. (2026). Limit cycles in piecewise quadratic Kolmogorov systems. Communications in Nonlinear Science and Numerical Simulation, 152( Ja 2026), 1-16. doi:10.1016/j.cnsns.2025.109285
    • NLM

      Cruz LPC da, Oliveira RD dos S, Torregrosa J. Limit cycles in piecewise quadratic Kolmogorov systems [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2026 ; 152( Ja 2026): 1-16.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2025.109285
    • Vancouver

      Cruz LPC da, Oliveira RD dos S, Torregrosa J. Limit cycles in piecewise quadratic Kolmogorov systems [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2026 ; 152( Ja 2026): 1-16.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2025.109285
  • Fonte: Communications in Nonlinear Science and Numerical Simulation. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES, SISTEMAS DISSIPATIVO

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AZEVEDO, Vinícius Tavares e LÓPEZ-LÁZARO, Heraclio e TAKAESSU JUNIOR, Carlos Roberto. Existence and continuity of pullback exponential attractors for a family of non-classical reaction-diffusion equations. Communications in Nonlinear Science and Numerical Simulation, v. 152, n. Ja 2026, p. 1-12, 2026Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2025.109198. Acesso em: 05 nov. 2025.
    • APA

      Azevedo, V. T., López-Lázaro, H., & Takaessu Junior, C. R. (2026). Existence and continuity of pullback exponential attractors for a family of non-classical reaction-diffusion equations. Communications in Nonlinear Science and Numerical Simulation, 152( Ja 2026), 1-12. doi:10.1016/j.cnsns.2025.109198
    • NLM

      Azevedo VT, López-Lázaro H, Takaessu Junior CR. Existence and continuity of pullback exponential attractors for a family of non-classical reaction-diffusion equations [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2026 ; 152( Ja 2026): 1-12.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2025.109198
    • Vancouver

      Azevedo VT, López-Lázaro H, Takaessu Junior CR. Existence and continuity of pullback exponential attractors for a family of non-classical reaction-diffusion equations [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2026 ; 152( Ja 2026): 1-12.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2025.109198
  • Fonte: Communications in Nonlinear Science and Numerical Simulation. Unidade: ICMC

    Assuntos: ATRATORES, MECÂNICA DOS FLUÍDOS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LÓPEZ-LÁZARO, Heraclio e MARÍN-RUBIO, Pedro e PLANAS, Gabriela. Non-Newtonian incompressible fluids with nonlinear shear tensor and hereditary conditions. Communications in Nonlinear Science and Numerical Simulation, v. No 2024, p. 1-20, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2024.108204. Acesso em: 05 nov. 2025.
    • APA

      López-Lázaro, H., Marín-Rubio, P., & Planas, G. (2024). Non-Newtonian incompressible fluids with nonlinear shear tensor and hereditary conditions. Communications in Nonlinear Science and Numerical Simulation, No 2024, 1-20. doi:10.1016/j.cnsns.2024.108204
    • NLM

      López-Lázaro H, Marín-Rubio P, Planas G. Non-Newtonian incompressible fluids with nonlinear shear tensor and hereditary conditions [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2024 ; No 2024 1-20.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2024.108204
    • Vancouver

      López-Lázaro H, Marín-Rubio P, Planas G. Non-Newtonian incompressible fluids with nonlinear shear tensor and hereditary conditions [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2024 ; No 2024 1-20.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2024.108204
  • Fonte: Communications in Nonlinear Science and Numerical Simulation. Unidade: IME

    Assunto: EQUAÇÕES INTEGRO-DIFERENCIAIS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      STEINDORF, Vanessa et al. Symmetry in a multi-strain epidemiological model with distributed delay as a general cross-protection period and disease enhancement factor. Communications in Nonlinear Science and Numerical Simulation, v. 128, n. artigo 107663, p. 1-21, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2023.107663. Acesso em: 05 nov. 2025.
    • APA

      Steindorf, V., Oliva, S. M., Stollenwerk, N., & Aguiar, M. (2024). Symmetry in a multi-strain epidemiological model with distributed delay as a general cross-protection period and disease enhancement factor. Communications in Nonlinear Science and Numerical Simulation, 128( artigo 107663), 1-21. doi:10.1016/j.cnsns.2023.107663
    • NLM

      Steindorf V, Oliva SM, Stollenwerk N, Aguiar M. Symmetry in a multi-strain epidemiological model with distributed delay as a general cross-protection period and disease enhancement factor [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2024 ; 128( artigo 107663): 1-21.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2023.107663
    • Vancouver

      Steindorf V, Oliva SM, Stollenwerk N, Aguiar M. Symmetry in a multi-strain epidemiological model with distributed delay as a general cross-protection period and disease enhancement factor [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2024 ; 128( artigo 107663): 1-21.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2023.107663
  • Fonte: Communications in Nonlinear Science and Numerical Simulation. Unidade: IF

    Assuntos: NEOPLASIAS, QUIMIOMETRIA, PROTOCOLOS CLÍNICOS, BIOFÍSICA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LÓPEZ, Álvaro G. et al. The role of dose density in combination cancer chemotherapy. Communications in Nonlinear Science and Numerical Simulation, v. 79, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2019.104918. Acesso em: 05 nov. 2025.
    • APA

      López, Á. G., Iarosz, K. C., Batista, A. M., Seoane, J. M., & Viana, R. L. (2019). The role of dose density in combination cancer chemotherapy. Communications in Nonlinear Science and Numerical Simulation, 79. doi:10.1016/j.cnsns.2019.104918
    • NLM

      López ÁG, Iarosz KC, Batista AM, Seoane JM, Viana RL. The role of dose density in combination cancer chemotherapy [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2019 ; 79[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2019.104918
    • Vancouver

      López ÁG, Iarosz KC, Batista AM, Seoane JM, Viana RL. The role of dose density in combination cancer chemotherapy [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2019 ; 79[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2019.104918
  • Fonte: Communications in Nonlinear Science and Numerical Simulation. Unidade: IF

    Assunto: QUIMIOTERAPIA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LÓPEZ, Alvaro G et al. Nonlinear cancer chemotherapy: Modelling the Norton-Simon hypothesis. Communications in Nonlinear Science and Numerical Simulation, v. 70, p. 307-317, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2018.11.006. Acesso em: 05 nov. 2025.
    • APA

      López, A. G., Iarosz, K. C., Batista, A. M., Seoane, J. M., Viana, R. L., & Sanjuan, M. A. F. (2019). Nonlinear cancer chemotherapy: Modelling the Norton-Simon hypothesis. Communications in Nonlinear Science and Numerical Simulation, 70, 307-317. doi:10.1016/j.cnsns.2018.11.006
    • NLM

      López AG, Iarosz KC, Batista AM, Seoane JM, Viana RL, Sanjuan MAF. Nonlinear cancer chemotherapy: Modelling the Norton-Simon hypothesis [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2019 ; 70 307-317.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2018.11.006
    • Vancouver

      López AG, Iarosz KC, Batista AM, Seoane JM, Viana RL, Sanjuan MAF. Nonlinear cancer chemotherapy: Modelling the Norton-Simon hypothesis [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2019 ; 70 307-317.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2018.11.006

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025