Filtros : "Communications in Mathematical Physics" "Financiamento FAPESP" Limpar

Filtros



Refine with date range


  • Source: Communications in Mathematical Physics. Unidade: ICMC

    Subjects: PROCESSOS GAUSSIANOS, ESTATÍSTICA APLICADA, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIAN, Zheng e LAMB, Jeroen S. W e PEREIRA, Tiago. Mean-field and fluctuations for hub dynamics in heterogeneous random networks. Communications in Mathematical Physics, v. 406, p. 1-42, 2025Tradução . . Disponível em: https://doi.org/10.1007/s00220-025-05335-0. Acesso em: 09 nov. 2025.
    • APA

      Bian, Z., Lamb, J. S. W., & Pereira, T. (2025). Mean-field and fluctuations for hub dynamics in heterogeneous random networks. Communications in Mathematical Physics, 406, 1-42. doi:10.1007/s00220-025-05335-0
    • NLM

      Bian Z, Lamb JSW, Pereira T. Mean-field and fluctuations for hub dynamics in heterogeneous random networks [Internet]. Communications in Mathematical Physics. 2025 ; 406 1-42.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s00220-025-05335-0
    • Vancouver

      Bian Z, Lamb JSW, Pereira T. Mean-field and fluctuations for hub dynamics in heterogeneous random networks [Internet]. Communications in Mathematical Physics. 2025 ; 406 1-42.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s00220-025-05335-0
  • Source: Communications in Mathematical Physics. Unidade: ICMC

    Subjects: TEOREMA DO PONTO FIXO, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, FÍSICA MATEMÁTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BAIK, Jinho e PROKHOROV, Andrei e SILVA, Guilherme Lima Ferreira da. Differential equations for the KPZ and periodic KPZ fixed points. Communications in Mathematical Physics, v. 401, n. 2, p. 1753-1806, 2023Tradução . . Disponível em: https://doi.org/10.1007/s00220-023-04683-z. Acesso em: 09 nov. 2025.
    • APA

      Baik, J., Prokhorov, A., & Silva, G. L. F. da. (2023). Differential equations for the KPZ and periodic KPZ fixed points. Communications in Mathematical Physics, 401( 2), 1753-1806. doi:10.1007/s00220-023-04683-z
    • NLM

      Baik J, Prokhorov A, Silva GLF da. Differential equations for the KPZ and periodic KPZ fixed points [Internet]. Communications in Mathematical Physics. 2023 ; 401( 2): 1753-1806.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s00220-023-04683-z
    • Vancouver

      Baik J, Prokhorov A, Silva GLF da. Differential equations for the KPZ and periodic KPZ fixed points [Internet]. Communications in Mathematical Physics. 2023 ; 401( 2): 1753-1806.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s00220-023-04683-z
  • Source: Communications in Mathematical Physics. Unidade: ICMC

    Subjects: EQUAÇÕES INTEGRO-DIFERENCIAIS, MATRIZES, FÍSICA MATEMÁTICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GHOSAL, Promit e SILVA, Guilherme Lima Ferreira da. Universality for multiplicative statistics of Hermitian random matrices and the integro-differential Painlevé II equation. Communications in Mathematical Physics, v. 397, n. 3, p. 1237-1307, 2023Tradução . . Disponível em: https://doi.org/10.1007/s00220-022-04518-3. Acesso em: 09 nov. 2025.
    • APA

      Ghosal, P., & Silva, G. L. F. da. (2023). Universality for multiplicative statistics of Hermitian random matrices and the integro-differential Painlevé II equation. Communications in Mathematical Physics, 397( 3), 1237-1307. doi:10.1007/s00220-022-04518-3
    • NLM

      Ghosal P, Silva GLF da. Universality for multiplicative statistics of Hermitian random matrices and the integro-differential Painlevé II equation [Internet]. Communications in Mathematical Physics. 2023 ; 397( 3): 1237-1307.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s00220-022-04518-3
    • Vancouver

      Ghosal P, Silva GLF da. Universality for multiplicative statistics of Hermitian random matrices and the integro-differential Painlevé II equation [Internet]. Communications in Mathematical Physics. 2023 ; 397( 3): 1237-1307.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s00220-022-04518-3
  • Source: Communications in Mathematical Physics. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BALADI, Viviane e SMANIA, Daniel. Fractional susceptibility functions for the quadratic family: Misiurewicz-Thurston parameters. Communications in Mathematical Physics, v. 385, n. 3, p. 1957-2007, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00220-021-04015-z. Acesso em: 09 nov. 2025.
    • APA

      Baladi, V., & Smania, D. (2021). Fractional susceptibility functions for the quadratic family: Misiurewicz-Thurston parameters. Communications in Mathematical Physics, 385( 3), 1957-2007. doi:10.1007/s00220-021-04015-z
    • NLM

      Baladi V, Smania D. Fractional susceptibility functions for the quadratic family: Misiurewicz-Thurston parameters [Internet]. Communications in Mathematical Physics. 2021 ; 385( 3): 1957-2007.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s00220-021-04015-z
    • Vancouver

      Baladi V, Smania D. Fractional susceptibility functions for the quadratic family: Misiurewicz-Thurston parameters [Internet]. Communications in Mathematical Physics. 2021 ; 385( 3): 1957-2007.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s00220-021-04015-z
  • Source: Communications in Mathematical Physics. Unidade: ICMC

    Subjects: PROCESSOS ALEATÓRIOS, ANÁLISE ASSINTÓTICA, MATRIZES, FÍSICA MATEMÁTICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARTÍNEZ-FINKELSHTEIN, Andrei e SILVA, Guilherme Lima Ferreira da. Spectral curves, variational problems and the Hermitian matrix model with external source. Communications in Mathematical Physics, v. 383, n. 3, p. 2163-2242, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00220-021-03999-y. Acesso em: 09 nov. 2025.
    • APA

      Martínez-Finkelshtein, A., & Silva, G. L. F. da. (2021). Spectral curves, variational problems and the Hermitian matrix model with external source. Communications in Mathematical Physics, 383( 3), 2163-2242. doi:10.1007/s00220-021-03999-y
    • NLM

      Martínez-Finkelshtein A, Silva GLF da. Spectral curves, variational problems and the Hermitian matrix model with external source [Internet]. Communications in Mathematical Physics. 2021 ; 383( 3): 2163-2242.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s00220-021-03999-y
    • Vancouver

      Martínez-Finkelshtein A, Silva GLF da. Spectral curves, variational problems and the Hermitian matrix model with external source [Internet]. Communications in Mathematical Physics. 2021 ; 383( 3): 2163-2242.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s00220-021-03999-y
  • Source: Communications in Mathematical Physics. Unidades: IME, IF

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, MECÂNICA DOS FLUÍDOS, TEORIA QUÂNTICA DE CAMPO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HENRY, Daniel Bauman e PEREZ, Jose Fernando e WRESZINSKI, Walter Felipe. Stability theory for solitary-wave solutions of scalar field equations. Communications in Mathematical Physics, v. 85, p. 351-361, 1982Tradução . . Disponível em: https://doi.org/10.1007/BF01208719. Acesso em: 09 nov. 2025.
    • APA

      Henry, D. B., Perez, J. F., & Wreszinski, W. F. (1982). Stability theory for solitary-wave solutions of scalar field equations. Communications in Mathematical Physics, 85, 351-361. doi:10.1007/BF01208719
    • NLM

      Henry DB, Perez JF, Wreszinski WF. Stability theory for solitary-wave solutions of scalar field equations [Internet]. Communications in Mathematical Physics. 1982 ; 85 351-361.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/BF01208719
    • Vancouver

      Henry DB, Perez JF, Wreszinski WF. Stability theory for solitary-wave solutions of scalar field equations [Internet]. Communications in Mathematical Physics. 1982 ; 85 351-361.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/BF01208719

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025