Filtros : "Communications in Mathematical Physics" "IME-MAT" Limpar

Filtros



Limitar por data


  • Fonte: Communications in Mathematical Physics. Unidade: IME

    Assunto: FÍSICA MATEMÁTICA

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e KŘIŽKA, Libor. Positive energy representations of affine vertex algebras. Communications in Mathematical Physics, n. 2, p. 841-891, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00220-020-03861-7. Acesso em: 08 nov. 2025.
    • APA

      Futorny, V., & Křižka, L. (2021). Positive energy representations of affine vertex algebras. Communications in Mathematical Physics, ( 2), 841-891. doi:10.1007/s00220-020-03861-7
    • NLM

      Futorny V, Křižka L. Positive energy representations of affine vertex algebras [Internet]. Communications in Mathematical Physics. 2021 ;( 2): 841-891.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s00220-020-03861-7
    • Vancouver

      Futorny V, Křižka L. Positive energy representations of affine vertex algebras [Internet]. Communications in Mathematical Physics. 2021 ;( 2): 841-891.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s00220-020-03861-7
  • Fonte: Communications in Mathematical Physics. Unidade: IME

    Assuntos: FÍSICA MATEMÁTICA, GEOMETRIA ALGÉBRICA, ANÁLISE FUNCIONAL, ÁLGEBRAS DE OPERADORES

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAKAWA, Tomoyuki e FUTORNY, Vyacheslav e RAMIREZ, Luis Enrique. Weight representations of admissible affine vertex algebras. Communications in Mathematical Physics, v. 353, p. 1151–1178, 2017Tradução . . Disponível em: https://doi.org/10.1007/s00220-017-2872-3. Acesso em: 08 nov. 2025.
    • APA

      Arakawa, T., Futorny, V., & Ramirez, L. E. (2017). Weight representations of admissible affine vertex algebras. Communications in Mathematical Physics, 353, 1151–1178. doi:10.1007/s00220-017-2872-3
    • NLM

      Arakawa T, Futorny V, Ramirez LE. Weight representations of admissible affine vertex algebras [Internet]. Communications in Mathematical Physics. 2017 ; 353 1151–1178.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s00220-017-2872-3
    • Vancouver

      Arakawa T, Futorny V, Ramirez LE. Weight representations of admissible affine vertex algebras [Internet]. Communications in Mathematical Physics. 2017 ; 353 1151–1178.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s00220-017-2872-3
  • Fonte: Communications in Mathematical Physics. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e GRANTCHAROV, Dimitar e RAMÍREZ, Luis Enrique. New singular Gelfand–Tsetlin gl(n)-modules of index 2. Communications in Mathematical Physics, v. 355, n. 3, p. 1209–1241, 2017Tradução . . Disponível em: https://doi.org/10.1007/s00220-017-2967-x. Acesso em: 08 nov. 2025.
    • APA

      Futorny, V., Grantcharov, D., & Ramírez, L. E. (2017). New singular Gelfand–Tsetlin gl(n)-modules of index 2. Communications in Mathematical Physics, 355( 3), 1209–1241. doi:10.1007/s00220-017-2967-x
    • NLM

      Futorny V, Grantcharov D, Ramírez LE. New singular Gelfand–Tsetlin gl(n)-modules of index 2 [Internet]. Communications in Mathematical Physics. 2017 ; 355( 3): 1209–1241.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s00220-017-2967-x
    • Vancouver

      Futorny V, Grantcharov D, Ramírez LE. New singular Gelfand–Tsetlin gl(n)-modules of index 2 [Internet]. Communications in Mathematical Physics. 2017 ; 355( 3): 1209–1241.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s00220-017-2967-x
  • Fonte: Communications in Mathematical Physics. Unidade: IME

    Assunto: SISTEMAS DINÂMICOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SAGHIN, Radu e VARGAS, Edson. Invariant measures for cherry flows. Communications in Mathematical Physics, v. 317, n. 1, p. 55-67, 2013Tradução . . Disponível em: https://doi.org/10.1007/s00220-012-1611-z. Acesso em: 08 nov. 2025.
    • APA

      Saghin, R., & Vargas, E. (2013). Invariant measures for cherry flows. Communications in Mathematical Physics, 317( 1), 55-67. doi:10.1007/s00220-012-1611-z
    • NLM

      Saghin R, Vargas E. Invariant measures for cherry flows [Internet]. Communications in Mathematical Physics. 2013 ; 317( 1): 55-67.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s00220-012-1611-z
    • Vancouver

      Saghin R, Vargas E. Invariant measures for cherry flows [Internet]. Communications in Mathematical Physics. 2013 ; 317( 1): 55-67.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s00220-012-1611-z
  • Fonte: Communications in Mathematical Physics. Unidade: IME

    Assunto: SISTEMAS DINÂMICOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SAGHIN, Radu e SUN, Wenxiang e VARGAS, Edson. On Dirac physical measures for transitive flows. Communications in Mathematical Physics, v. 298, n. 3, p. 741-756, 2010Tradução . . Disponível em: https://doi.org/10.1007/s00220-010-1077-9. Acesso em: 08 nov. 2025.
    • APA

      Saghin, R., Sun, W., & Vargas, E. (2010). On Dirac physical measures for transitive flows. Communications in Mathematical Physics, 298( 3), 741-756. doi:10.1007/s00220-010-1077-9
    • NLM

      Saghin R, Sun W, Vargas E. On Dirac physical measures for transitive flows [Internet]. Communications in Mathematical Physics. 2010 ; 298( 3): 741-756.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s00220-010-1077-9
    • Vancouver

      Saghin R, Sun W, Vargas E. On Dirac physical measures for transitive flows [Internet]. Communications in Mathematical Physics. 2010 ; 298( 3): 741-756.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s00220-010-1077-9
  • Fonte: Communications in Mathematical Physics. Unidade: IME

    Assunto: RELATIVIDADE (FÍSICA)

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIAMBÓ, Roberto e GIANNONI, Fabio e PICCIONE, Paolo. Genericity of nondegeneracy for light rays in stationary spacetimes. Communications in Mathematical Physics, v. 287, n. 3, p. 903-923, 2009Tradução . . Disponível em: https://doi.org/10.1007/s00220-009-0742-3. Acesso em: 08 nov. 2025.
    • APA

      Giambó, R., Giannoni, F., & Piccione, P. (2009). Genericity of nondegeneracy for light rays in stationary spacetimes. Communications in Mathematical Physics, 287( 3), 903-923. doi:10.1007/s00220-009-0742-3
    • NLM

      Giambó R, Giannoni F, Piccione P. Genericity of nondegeneracy for light rays in stationary spacetimes [Internet]. Communications in Mathematical Physics. 2009 ; 287( 3): 903-923.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s00220-009-0742-3
    • Vancouver

      Giambó R, Giannoni F, Piccione P. Genericity of nondegeneracy for light rays in stationary spacetimes [Internet]. Communications in Mathematical Physics. 2009 ; 287( 3): 903-923.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s00220-009-0742-3
  • Fonte: Communications in Mathematical Physics. Unidade: IME

    Assunto: TEORIA DA REPRESENTAÇÃO

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DIMITROV, Ivan e FUTORNY, Vyacheslav e PENKOV, Ivan. A reduction theorem for highest weight modules over toroidal Lie algebras. Communications in Mathematical Physics, v. 250, n. 1, p. 47-68, 2004Tradução . . Disponível em: https://doi.org/10.1007/s00220-004-1142-3. Acesso em: 08 nov. 2025.
    • APA

      Dimitrov, I., Futorny, V., & Penkov, I. (2004). A reduction theorem for highest weight modules over toroidal Lie algebras. Communications in Mathematical Physics, 250( 1), 47-68. doi:10.1007/s00220-004-1142-3
    • NLM

      Dimitrov I, Futorny V, Penkov I. A reduction theorem for highest weight modules over toroidal Lie algebras [Internet]. Communications in Mathematical Physics. 2004 ; 250( 1): 47-68.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s00220-004-1142-3
    • Vancouver

      Dimitrov I, Futorny V, Penkov I. A reduction theorem for highest weight modules over toroidal Lie algebras [Internet]. Communications in Mathematical Physics. 2004 ; 250( 1): 47-68.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s00220-004-1142-3
  • Fonte: Communications in Mathematical Physics. Unidade: IME

    Assunto: RELATIVIDADE (FÍSICA)

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIAMBÓ, Roberto et al. New solutions of Einstein equations in spherical symmetry: the cosmic censor to the court. Communications in Mathematical Physics, v. 235, n. 3, p. 545-563, 2003Tradução . . Disponível em: https://doi.org/10.1007/s00220-003-0793-9. Acesso em: 08 nov. 2025.
    • APA

      Giambó, R., Giannoni, F., Magli, G., & Piccione, P. (2003). New solutions of Einstein equations in spherical symmetry: the cosmic censor to the court. Communications in Mathematical Physics, 235( 3), 545-563. doi:10.1007/s00220-003-0793-9
    • NLM

      Giambó R, Giannoni F, Magli G, Piccione P. New solutions of Einstein equations in spherical symmetry: the cosmic censor to the court [Internet]. Communications in Mathematical Physics. 2003 ; 235( 3): 545-563.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s00220-003-0793-9
    • Vancouver

      Giambó R, Giannoni F, Magli G, Piccione P. New solutions of Einstein equations in spherical symmetry: the cosmic censor to the court [Internet]. Communications in Mathematical Physics. 2003 ; 235( 3): 545-563.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s00220-003-0793-9
  • Fonte: Communications in Mathematical Physics. Unidade: IME

    Assunto: ANÁLISE FUNCIONAL

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIANNONI, Fabio e MASIELLO, Antonio e PICCIONE, Paolo. A variational theory for light rays in stably causal Lorentzian manifolds: regularity and multiplicity results. Communications in Mathematical Physics, v. 187, p. 375-415, 1997Tradução . . Disponível em: https://doi.org/10.1007/s002200050141. Acesso em: 08 nov. 2025.
    • APA

      Giannoni, F., Masiello, A., & Piccione, P. (1997). A variational theory for light rays in stably causal Lorentzian manifolds: regularity and multiplicity results. Communications in Mathematical Physics, 187, 375-415. doi:10.1007/s002200050141
    • NLM

      Giannoni F, Masiello A, Piccione P. A variational theory for light rays in stably causal Lorentzian manifolds: regularity and multiplicity results [Internet]. Communications in Mathematical Physics. 1997 ; 187 375-415.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s002200050141
    • Vancouver

      Giannoni F, Masiello A, Piccione P. A variational theory for light rays in stably causal Lorentzian manifolds: regularity and multiplicity results [Internet]. Communications in Mathematical Physics. 1997 ; 187 375-415.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s002200050141
  • Fonte: Communications in Mathematical Physics. Unidade: IME

    Assuntos: PROCESSOS ALEATÓRIOS, MECÂNICA ESTATÍSTICA, PERCOLAÇÃO

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NEVES, Eduardo Jordão e SCHONMANN, Roberto Henrique. Critical droplets and metastability for a Glauber dynamics at very low temperatures. Communications in Mathematical Physics, v. 137, p. 209-230, 1991Tradução . . Disponível em: https://doi.org/10.1007/BF02431878. Acesso em: 08 nov. 2025.
    • APA

      Neves, E. J., & Schonmann, R. H. (1991). Critical droplets and metastability for a Glauber dynamics at very low temperatures. Communications in Mathematical Physics, 137, 209-230. doi:10.1007/BF02431878
    • NLM

      Neves EJ, Schonmann RH. Critical droplets and metastability for a Glauber dynamics at very low temperatures [Internet]. Communications in Mathematical Physics. 1991 ; 137 209-230.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/BF02431878
    • Vancouver

      Neves EJ, Schonmann RH. Critical droplets and metastability for a Glauber dynamics at very low temperatures [Internet]. Communications in Mathematical Physics. 1991 ; 137 209-230.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/BF02431878

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025