Filtros : "Communications in Mathematical Physics" "ICMC-SMA" Limpar

Filtros



Refine with date range


  • Source: Communications in Mathematical Physics. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BALADI, Viviane e SMANIA, Daniel. Fractional susceptibility functions for the quadratic family: Misiurewicz-Thurston parameters. Communications in Mathematical Physics, v. 385, n. 3, p. 1957-2007, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00220-021-04015-z. Acesso em: 09 nov. 2025.
    • APA

      Baladi, V., & Smania, D. (2021). Fractional susceptibility functions for the quadratic family: Misiurewicz-Thurston parameters. Communications in Mathematical Physics, 385( 3), 1957-2007. doi:10.1007/s00220-021-04015-z
    • NLM

      Baladi V, Smania D. Fractional susceptibility functions for the quadratic family: Misiurewicz-Thurston parameters [Internet]. Communications in Mathematical Physics. 2021 ; 385( 3): 1957-2007.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s00220-021-04015-z
    • Vancouver

      Baladi V, Smania D. Fractional susceptibility functions for the quadratic family: Misiurewicz-Thurston parameters [Internet]. Communications in Mathematical Physics. 2021 ; 385( 3): 1957-2007.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s00220-021-04015-z
  • Source: Communications in Mathematical Physics. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HERTZ, Federico Rodriguez et al. Uniqueness of SRB measures for transitive diffeomorphisms on surfaces. Communications in Mathematical Physics, v. 306, n. 1, p. 35-49, 2011Tradução . . Disponível em: https://doi.org/10.1007/s00220-011-1275-0. Acesso em: 09 nov. 2025.
    • APA

      Hertz, F. R., Hertz, M. A. R., Tahzibi, A., & Ures, R. (2011). Uniqueness of SRB measures for transitive diffeomorphisms on surfaces. Communications in Mathematical Physics, 306( 1), 35-49. doi:10.1007/s00220-011-1275-0
    • NLM

      Hertz FR, Hertz MAR, Tahzibi A, Ures R. Uniqueness of SRB measures for transitive diffeomorphisms on surfaces [Internet]. Communications in Mathematical Physics. 2011 ; 306( 1): 35-49.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s00220-011-1275-0
    • Vancouver

      Hertz FR, Hertz MAR, Tahzibi A, Ures R. Uniqueness of SRB measures for transitive diffeomorphisms on surfaces [Internet]. Communications in Mathematical Physics. 2011 ; 306( 1): 35-49.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s00220-011-1275-0
  • Source: Communications in Mathematical Physics. Unidade: ICMC

    Subjects: TOPOLOGIA ALGÉBRICA, GEOMETRIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SPREAFICO, Mauro Flávio e ZERBINI, S. Spectral analysis and zeta determinant on the deformed spheres. Communications in Mathematical Physics, v. 273, n. 3, p. 677-704, 2007Tradução . . Disponível em: https://doi.org/10.1007/s00220-007-0229-z. Acesso em: 09 nov. 2025.
    • APA

      Spreafico, M. F., & Zerbini, S. (2007). Spectral analysis and zeta determinant on the deformed spheres. Communications in Mathematical Physics, 273( 3), 677-704. doi:10.1007/s00220-007-0229-z
    • NLM

      Spreafico MF, Zerbini S. Spectral analysis and zeta determinant on the deformed spheres [Internet]. Communications in Mathematical Physics. 2007 ; 273( 3): 677-704.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s00220-007-0229-z
    • Vancouver

      Spreafico MF, Zerbini S. Spectral analysis and zeta determinant on the deformed spheres [Internet]. Communications in Mathematical Physics. 2007 ; 273( 3): 677-704.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s00220-007-0229-z
  • Source: Communications in Mathematical Physics. Unidade: ICMC

    Assunto: FÍSICA MATEMÁTICA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FARIA DA VEIGA, Paulo Afonso e O'CARROLL, Michael e SCHOR, Ricardo. Existence of baryons, baryon spectrum and mass splitting in strong coupling lattice QCD. Communications in Mathematical Physics, v. 245, p. 383-406, 2004Tradução . . Acesso em: 09 nov. 2025.
    • APA

      Faria da Veiga, P. A., O'Carroll, M., & Schor, R. (2004). Existence of baryons, baryon spectrum and mass splitting in strong coupling lattice QCD. Communications in Mathematical Physics, 245, 383-406.
    • NLM

      Faria da Veiga PA, O'Carroll M, Schor R. Existence of baryons, baryon spectrum and mass splitting in strong coupling lattice QCD. Communications in Mathematical Physics. 2004 ; 245 383-406.[citado 2025 nov. 09 ]
    • Vancouver

      Faria da Veiga PA, O'Carroll M, Schor R. Existence of baryons, baryon spectrum and mass splitting in strong coupling lattice QCD. Communications in Mathematical Physics. 2004 ; 245 383-406.[citado 2025 nov. 09 ]
  • Source: Communications in Mathematical Physics. Unidade: ICMC

    Assunto: FÍSICA MATEMÁTICA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FARIA DA VEIGA, Paulo Afonso et al. Spectral analysis of weakly coupled stochastic lattice ginzburg-landau models. Communications in Mathematical Physics, v. 220, p. 377-402, 2001Tradução . . Acesso em: 09 nov. 2025.
    • APA

      Faria da Veiga, P. A., O'Carroll, M., Pereira, E., & Schor, R. (2001). Spectral analysis of weakly coupled stochastic lattice ginzburg-landau models. Communications in Mathematical Physics, 220, 377-402.
    • NLM

      Faria da Veiga PA, O'Carroll M, Pereira E, Schor R. Spectral analysis of weakly coupled stochastic lattice ginzburg-landau models. Communications in Mathematical Physics. 2001 ; 220 377-402.[citado 2025 nov. 09 ]
    • Vancouver

      Faria da Veiga PA, O'Carroll M, Pereira E, Schor R. Spectral analysis of weakly coupled stochastic lattice ginzburg-landau models. Communications in Mathematical Physics. 2001 ; 220 377-402.[citado 2025 nov. 09 ]
  • Source: Communications in Mathematical Physics. Unidades: ICMC, IF

    Assunto: FÍSICA MATEMÁTICA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARCHETTI, Domingos Humberto Urbano e FARIA DA VEIGA, Paulo Afonso e HURD, T R. 1 / n - expansion as a perturbation about the mean field theory: a one-dimensional fermi model. Communications in Mathematical Physics, v. 179, p. 632-646, 1996Tradução . . Acesso em: 09 nov. 2025.
    • APA

      Marchetti, D. H. U., Faria da Veiga, P. A., & Hurd, T. R. (1996). 1 / n - expansion as a perturbation about the mean field theory: a one-dimensional fermi model. Communications in Mathematical Physics, 179, 632-646.
    • NLM

      Marchetti DHU, Faria da Veiga PA, Hurd TR. 1 / n - expansion as a perturbation about the mean field theory: a one-dimensional fermi model. Communications in Mathematical Physics. 1996 ; 179 632-646.[citado 2025 nov. 09 ]
    • Vancouver

      Marchetti DHU, Faria da Veiga PA, Hurd TR. 1 / n - expansion as a perturbation about the mean field theory: a one-dimensional fermi model. Communications in Mathematical Physics. 1996 ; 179 632-646.[citado 2025 nov. 09 ]

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025