Filtros : "Financiamento FAPESP" "Journal of Differential Equations" "2022" Limpar

Filtros



Refine with date range


  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA QUALITATIVA, SISTEMAS DIFERENCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRAUN, Francisco e FERNANDES, Filipe. On Reeb components of nonsingular polynomial differential systems on the real plane. Journal of Differential Equations, v. 320, p. 469-478, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2022.03.002. Acesso em: 08 out. 2025.
    • APA

      Braun, F., & Fernandes, F. (2022). On Reeb components of nonsingular polynomial differential systems on the real plane. Journal of Differential Equations, 320, 469-478. doi:10.1016/j.jde.2022.03.002
    • NLM

      Braun F, Fernandes F. On Reeb components of nonsingular polynomial differential systems on the real plane [Internet]. Journal of Differential Equations. 2022 ; 320 469-478.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2022.03.002
    • Vancouver

      Braun F, Fernandes F. On Reeb components of nonsingular polynomial differential systems on the real plane [Internet]. Journal of Differential Equations. 2022 ; 320 469-478.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2022.03.002
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, INTEGRAL DE DENJOY, INTEGRAL DE PERRON, TEORIA ASSINTÓTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Fernanda Andrade da e FEDERSON, Marcia e TOON, Eduard. Stability, boundedness and controllability of solutions of measure functional differential equations. Journal of Differential Equations, v. 307, n. Ja 2022, p. 160-210, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.10.044. Acesso em: 08 out. 2025.
    • APA

      Silva, F. A. da, Federson, M., & Toon, E. (2022). Stability, boundedness and controllability of solutions of measure functional differential equations. Journal of Differential Equations, 307( Ja 2022), 160-210. doi:10.1016/j.jde.2021.10.044
    • NLM

      Silva FA da, Federson M, Toon E. Stability, boundedness and controllability of solutions of measure functional differential equations [Internet]. Journal of Differential Equations. 2022 ; 307( Ja 2022): 160-210.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2021.10.044
    • Vancouver

      Silva FA da, Federson M, Toon E. Stability, boundedness and controllability of solutions of measure functional differential equations [Internet]. Journal of Differential Equations. 2022 ; 307( Ja 2022): 160-210.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2021.10.044
  • Source: Journal of Differential Equations. Unidade: IME

    Subjects: MÉTODOS VARIACIONAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS, FÍSICA MOLECULAR

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      D'AVENIA, Pietro e MAIA, Liliane e SICILIANO, Gaetano. Hartree-Fock type systems: existence of ground states and asymptotic behavior. Journal of Differential Equations, v. 355, p. 580-614, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2022.07.012. Acesso em: 08 out. 2025.
    • APA

      d'Avenia, P., Maia, L., & Siciliano, G. (2022). Hartree-Fock type systems: existence of ground states and asymptotic behavior. Journal of Differential Equations, 355, 580-614. doi:10.1016/j.jde.2022.07.012
    • NLM

      d'Avenia P, Maia L, Siciliano G. Hartree-Fock type systems: existence of ground states and asymptotic behavior [Internet]. Journal of Differential Equations. 2022 ; 355 580-614.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2022.07.012
    • Vancouver

      d'Avenia P, Maia L, Siciliano G. Hartree-Fock type systems: existence of ground states and asymptotic behavior [Internet]. Journal of Differential Equations. 2022 ; 355 580-614.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2022.07.012
  • Source: Journal of Differential Equations. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NAKASATO, Jean Carlos e PEREIRA, Marcone Corrêa. An optimal control problem in a tubular thin domain with rough boundary. Journal of Differential Equations, v. 313, p. 188-243, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.12.021. Acesso em: 08 out. 2025.
    • APA

      Nakasato, J. C., & Pereira, M. C. (2022). An optimal control problem in a tubular thin domain with rough boundary. Journal of Differential Equations, 313, 188-243. doi:10.1016/j.jde.2021.12.021
    • NLM

      Nakasato JC, Pereira MC. An optimal control problem in a tubular thin domain with rough boundary [Internet]. Journal of Differential Equations. 2022 ; 313 188-243.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2021.12.021
    • Vancouver

      Nakasato JC, Pereira MC. An optimal control problem in a tubular thin domain with rough boundary [Internet]. Journal of Differential Equations. 2022 ; 313 188-243.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2021.12.021
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, TEORIA DA BIFURCAÇÃO, SISTEMAS DINÂMICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ITIKAWA, Jackson e OLIVEIRA, Regilene Delazari dos Santos e TORREGROSA, Joan. First-order perturbation for multi-parameter center families. Journal of Differential Equations, v. 309, p. 291-310, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.11.035. Acesso em: 08 out. 2025.
    • APA

      Itikawa, J., Oliveira, R. D. dos S., & Torregrosa, J. (2022). First-order perturbation for multi-parameter center families. Journal of Differential Equations, 309, 291-310. doi:10.1016/j.jde.2021.11.035
    • NLM

      Itikawa J, Oliveira RD dos S, Torregrosa J. First-order perturbation for multi-parameter center families [Internet]. Journal of Differential Equations. 2022 ; 309 291-310.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2021.11.035
    • Vancouver

      Itikawa J, Oliveira RD dos S, Torregrosa J. First-order perturbation for multi-parameter center families [Internet]. Journal of Differential Equations. 2022 ; 309 291-310.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2021.11.035
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, OPERADORES DIFERENCIAIS, EQUAÇÕES DIFERENCIAIS COM RETARDAMENTO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      YANCHUK, Serhiy et al. Absolute stability and absolute hyperbolicity in systems with discrete time-delays. Journal of Differential Equations, v. 318, p. 323-343, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2022.02.026. Acesso em: 08 out. 2025.
    • APA

      Yanchuk, S., Wolfrum, M., Pereira, T., & Turaev, D. (2022). Absolute stability and absolute hyperbolicity in systems with discrete time-delays. Journal of Differential Equations, 318, 323-343. doi:10.1016/j.jde.2022.02.026
    • NLM

      Yanchuk S, Wolfrum M, Pereira T, Turaev D. Absolute stability and absolute hyperbolicity in systems with discrete time-delays [Internet]. Journal of Differential Equations. 2022 ; 318 323-343.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2022.02.026
    • Vancouver

      Yanchuk S, Wolfrum M, Pereira T, Turaev D. Absolute stability and absolute hyperbolicity in systems with discrete time-delays [Internet]. Journal of Differential Equations. 2022 ; 318 323-343.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2022.02.026
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: SOLUÇÕES PERIÓDICAS, EQUAÇÕES INTEGRAIS, INTEGRAL DE DENJOY

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AFONSO, S M e BONOTTO, Everaldo de Mello e SILVA, Márcia Richtielle da. Periodic solutions of measure functional differential equations. Journal of Differential Equations, v. 309, p. 196-230, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.11.031. Acesso em: 08 out. 2025.
    • APA

      Afonso, S. M., Bonotto, E. de M., & Silva, M. R. da. (2022). Periodic solutions of measure functional differential equations. Journal of Differential Equations, 309, 196-230. doi:10.1016/j.jde.2021.11.031
    • NLM

      Afonso SM, Bonotto E de M, Silva MR da. Periodic solutions of measure functional differential equations [Internet]. Journal of Differential Equations. 2022 ; 309 196-230.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2021.11.031
    • Vancouver

      Afonso SM, Bonotto E de M, Silva MR da. Periodic solutions of measure functional differential equations [Internet]. Journal of Differential Equations. 2022 ; 309 196-230.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2021.11.031

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025