Filtros : "Financiamento FAPESP" "Financiamento PROEX/CAPES" "Indexado no MathSciNet" Limpar

Filtros



Refine with date range


  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES, SISTEMAS DISSIPATIVO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AZEVEDO, Vinícius Tavares e LÓPEZ-LÁZARO, Heraclio e TAKAESSU JUNIOR, Carlos Roberto. Existence and continuity of pullback exponential attractors for a family of non-classical reaction-diffusion equations. Communications in Nonlinear Science and Numerical Simulation, v. 152, n. Ja 2026, p. 1-12, 2026Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2025.109198. Acesso em: 08 out. 2025.
    • APA

      Azevedo, V. T., López-Lázaro, H., & Takaessu Junior, C. R. (2026). Existence and continuity of pullback exponential attractors for a family of non-classical reaction-diffusion equations. Communications in Nonlinear Science and Numerical Simulation, 152( Ja 2026), 1-12. doi:10.1016/j.cnsns.2025.109198
    • NLM

      Azevedo VT, López-Lázaro H, Takaessu Junior CR. Existence and continuity of pullback exponential attractors for a family of non-classical reaction-diffusion equations [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2026 ; 152( Ja 2026): 1-12.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2025.109198
    • Vancouver

      Azevedo VT, López-Lázaro H, Takaessu Junior CR. Existence and continuity of pullback exponential attractors for a family of non-classical reaction-diffusion equations [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2026 ; 152( Ja 2026): 1-12.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2025.109198
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, SISTEMAS DISSIPATIVO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de et al. A unified theory for inertial manifolds, saddle point property and exponential dichotomy. Journal of Differential Equations, v. 416, n. Ja 2025, p. 1462-1495, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2024.10.029. Acesso em: 08 out. 2025.
    • APA

      Carvalho, A. N. de, Lappicy, P., Moreira, E. M., & Oliveira-Sousa, A. do N. (2025). A unified theory for inertial manifolds, saddle point property and exponential dichotomy. Journal of Differential Equations, 416( Ja 2025), 1462-1495. doi:10.1016/j.jde.2024.10.029
    • NLM

      Carvalho AN de, Lappicy P, Moreira EM, Oliveira-Sousa A do N. A unified theory for inertial manifolds, saddle point property and exponential dichotomy [Internet]. Journal of Differential Equations. 2025 ; 416( Ja 2025): 1462-1495.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2024.10.029
    • Vancouver

      Carvalho AN de, Lappicy P, Moreira EM, Oliveira-Sousa A do N. A unified theory for inertial manifolds, saddle point property and exponential dichotomy [Internet]. Journal of Differential Equations. 2025 ; 416( Ja 2025): 1462-1495.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2024.10.029
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DE NAVIER-STOKES, ATRATORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HUACCHA-NEYRA, Jackeline et al. Pullback exponential attractor of dynamical systems associated with non-cylindrical problems. Journal of Mathematical Analysis and Applications, v. 547, n. 2, p. 1-30, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2025.129332. Acesso em: 08 out. 2025.
    • APA

      Huaccha-Neyra, J., López-Lázaro, H., Rubio, O., & Takaessu Junior, C. R. (2025). Pullback exponential attractor of dynamical systems associated with non-cylindrical problems. Journal of Mathematical Analysis and Applications, 547( 2), 1-30. doi:10.1016/j.jmaa.2025.129332
    • NLM

      Huaccha-Neyra J, López-Lázaro H, Rubio O, Takaessu Junior CR. Pullback exponential attractor of dynamical systems associated with non-cylindrical problems [Internet]. Journal of Mathematical Analysis and Applications. 2025 ; 547( 2): 1-30.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jmaa.2025.129332
    • Vancouver

      Huaccha-Neyra J, López-Lázaro H, Rubio O, Takaessu Junior CR. Pullback exponential attractor of dynamical systems associated with non-cylindrical problems [Internet]. Journal of Mathematical Analysis and Applications. 2025 ; 547( 2): 1-30.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jmaa.2025.129332
  • Source: Ergodic Theory and Dynamical Systems. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COSTA, José Santana Campos e TAHZIBI, Ali. Rigidity of Lyapunov exponents for derived from Anosov diffeomorphisms. Ergodic Theory and Dynamical Systems, v. 45, n. 5, p. 1444-1460, 2025Tradução . . Disponível em: https://doi.org/10.1017/etds.2024.59. Acesso em: 08 out. 2025.
    • APA

      Costa, J. S. C., & Tahzibi, A. (2025). Rigidity of Lyapunov exponents for derived from Anosov diffeomorphisms. Ergodic Theory and Dynamical Systems, 45( 5), 1444-1460. doi:10.1017/etds.2024.59
    • NLM

      Costa JSC, Tahzibi A. Rigidity of Lyapunov exponents for derived from Anosov diffeomorphisms [Internet]. Ergodic Theory and Dynamical Systems. 2025 ; 45( 5): 1444-1460.[citado 2025 out. 08 ] Available from: https://doi.org/10.1017/etds.2024.59
    • Vancouver

      Costa JSC, Tahzibi A. Rigidity of Lyapunov exponents for derived from Anosov diffeomorphisms [Internet]. Ergodic Theory and Dynamical Systems. 2025 ; 45( 5): 1444-1460.[citado 2025 out. 08 ] Available from: https://doi.org/10.1017/etds.2024.59
  • Source: Annali della Scuola Normale Superiore di Pisa, Classe di Scienze. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, OPERADORES POSITIVOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, Flank David Morais et al. Spectral analysis for some third-order differential equations: a semigroup approach. Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, v. XXVI, n. 2, p. 1071-1100, 2025Tradução . . Disponível em: https://doi.org/10.2422/2036-2145.202212_003. Acesso em: 08 out. 2025.
    • APA

      Bezerra, F. D. M., Carvalho, A. N. de, Santos, L. A., & Takaessu Junior, C. R. (2025). Spectral analysis for some third-order differential equations: a semigroup approach. Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, XXVI( 2), 1071-1100. doi:10.2422/2036-2145.202212_003
    • NLM

      Bezerra FDM, Carvalho AN de, Santos LA, Takaessu Junior CR. Spectral analysis for some third-order differential equations: a semigroup approach [Internet]. Annali della Scuola Normale Superiore di Pisa, Classe di Scienze. 2025 ; XXVI( 2): 1071-1100.[citado 2025 out. 08 ] Available from: https://doi.org/10.2422/2036-2145.202212_003
    • Vancouver

      Bezerra FDM, Carvalho AN de, Santos LA, Takaessu Junior CR. Spectral analysis for some third-order differential equations: a semigroup approach [Internet]. Annali della Scuola Normale Superiore di Pisa, Classe di Scienze. 2025 ; XXVI( 2): 1071-1100.[citado 2025 out. 08 ] Available from: https://doi.org/10.2422/2036-2145.202212_003
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, OPERADORES DIFERENCIAIS, OPERADORES LINEARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, Flank David Morais e LÓPEZ-LÁZARO, Heraclio e TAKAESSU JUNIOR, Carlos Roberto. Spectral and probabilistic analysis of third-order linear abstract differential equations. Journal of Dynamics and Differential Equations, 2025Tradução . . Disponível em: https://doi.org/10.1007/s10884-025-10418-6. Acesso em: 08 out. 2025.
    • APA

      Bezerra, F. D. M., López-Lázaro, H., & Takaessu Junior, C. R. (2025). Spectral and probabilistic analysis of third-order linear abstract differential equations. Journal of Dynamics and Differential Equations. doi:10.1007/s10884-025-10418-6
    • NLM

      Bezerra FDM, López-Lázaro H, Takaessu Junior CR. Spectral and probabilistic analysis of third-order linear abstract differential equations [Internet]. Journal of Dynamics and Differential Equations. 2025 ;[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s10884-025-10418-6
    • Vancouver

      Bezerra FDM, López-Lázaro H, Takaessu Junior CR. Spectral and probabilistic analysis of third-order linear abstract differential equations [Internet]. Journal of Dynamics and Differential Equations. 2025 ;[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s10884-025-10418-6
  • Source: Nonlinear Analysis : Hybrid Systems. Unidade: ICMC

    Subjects: EQUAÇÕES INTEGRAIS DE VOLTERRA-STIELTJES, EQUAÇÕES INTEGRAIS NÃO LINEARES, EQUAÇÕES INTEGRAIS, SOLUÇÕES PERIÓDICAS, OPERADORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Marielle Aparecida et al. On (Θ,T)-periodic solutions of abstract generalized ODEs and applications to Volterra-Stieltjes-type integral equations. Nonlinear Analysis : Hybrid Systems, v. 56, p. 1-17, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.nahs.2024.101573. Acesso em: 08 out. 2025.
    • APA

      Silva, M. A., Bonotto, E. de M., Collegari, R., Federson, M., & Gadotti, M. C. (2025). On (Θ,T)-periodic solutions of abstract generalized ODEs and applications to Volterra-Stieltjes-type integral equations. Nonlinear Analysis : Hybrid Systems, 56, 1-17. doi:10.1016/j.nahs.2024.101573
    • NLM

      Silva MA, Bonotto E de M, Collegari R, Federson M, Gadotti MC. On (Θ,T)-periodic solutions of abstract generalized ODEs and applications to Volterra-Stieltjes-type integral equations [Internet]. Nonlinear Analysis : Hybrid Systems. 2025 ; 56 1-17.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.nahs.2024.101573
    • Vancouver

      Silva MA, Bonotto E de M, Collegari R, Federson M, Gadotti MC. On (Θ,T)-periodic solutions of abstract generalized ODEs and applications to Volterra-Stieltjes-type integral equations [Internet]. Nonlinear Analysis : Hybrid Systems. 2025 ; 56 1-17.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.nahs.2024.101573
  • Source: Discrete and Continuous Dynamical Systems : Series B. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, OPERADORES LINEARES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, Flank David Morais et al. Spectral analysis and exponential stability of a generalized fractional Moore-Gibson-Thompson equation. Discrete and Continuous Dynamical Systems : Series B, v. 30, n. 2, p. 496-508, 2025Tradução . . Disponível em: https://doi.org/10.3934/dcdsb.2024098. Acesso em: 08 out. 2025.
    • APA

      Bezerra, F. D. M., Santos, L. A., Silva, M., & Takaessu Junior, C. R. (2025). Spectral analysis and exponential stability of a generalized fractional Moore-Gibson-Thompson equation. Discrete and Continuous Dynamical Systems : Series B, 30( 2), 496-508. doi:10.3934/dcdsb.2024098
    • NLM

      Bezerra FDM, Santos LA, Silva M, Takaessu Junior CR. Spectral analysis and exponential stability of a generalized fractional Moore-Gibson-Thompson equation [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2025 ; 30( 2): 496-508.[citado 2025 out. 08 ] Available from: https://doi.org/10.3934/dcdsb.2024098
    • Vancouver

      Bezerra FDM, Santos LA, Silva M, Takaessu Junior CR. Spectral analysis and exponential stability of a generalized fractional Moore-Gibson-Thompson equation [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2025 ; 30( 2): 496-508.[citado 2025 out. 08 ] Available from: https://doi.org/10.3934/dcdsb.2024098
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, PROBLEMAS DE CONTORNO, SISTEMAS DINÂMICOS

    Disponível em 2026-07-01Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LÓPEZ-LÁZARO, Heraclio et al. Pullback attractors with finite fractal dimension for a semilinear transfer equation with delay in some non-cylindrical domain. Journal of Differential Equations, v. 393, p. 58-101, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2024.02.005. Acesso em: 08 out. 2025.
    • APA

      López-Lázaro, H., Nascimento, M. J. D., Takaessu Junior, C. R., & Azevedo, V. T. (2024). Pullback attractors with finite fractal dimension for a semilinear transfer equation with delay in some non-cylindrical domain. Journal of Differential Equations, 393, 58-101. doi:10.1016/j.jde.2024.02.005
    • NLM

      López-Lázaro H, Nascimento MJD, Takaessu Junior CR, Azevedo VT. Pullback attractors with finite fractal dimension for a semilinear transfer equation with delay in some non-cylindrical domain [Internet]. Journal of Differential Equations. 2024 ; 393 58-101.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2024.02.005
    • Vancouver

      López-Lázaro H, Nascimento MJD, Takaessu Junior CR, Azevedo VT. Pullback attractors with finite fractal dimension for a semilinear transfer equation with delay in some non-cylindrical domain [Internet]. Journal of Differential Equations. 2024 ; 393 58-101.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2024.02.005
  • Source: Results in Mathematics. Unidade: ICMC

    Subjects: GEOMETRIA DIFERENCIAL CLÁSSICA, INVARIANTES DIFERENCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MEDINA-TEJEDA, Tito Alexandre. Some classes of frontals and its representation formulas. Results in Mathematics, v. 79, n. 5, p. 1-27, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00025-024-02221-4. Acesso em: 08 out. 2025.
    • APA

      Medina-Tejeda, T. A. (2024). Some classes of frontals and its representation formulas. Results in Mathematics, 79( 5), 1-27. doi:10.1007/s00025-024-02221-4
    • NLM

      Medina-Tejeda TA. Some classes of frontals and its representation formulas [Internet]. Results in Mathematics. 2024 ; 79( 5): 1-27.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00025-024-02221-4
    • Vancouver

      Medina-Tejeda TA. Some classes of frontals and its representation formulas [Internet]. Results in Mathematics. 2024 ; 79( 5): 1-27.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00025-024-02221-4
  • Source: Proceedings of the Royal Society of Edinburgh. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA DAS SINGULARIDADES, GEOMETRIA DIFERENCIAL AFIM

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOPES, Débora e RUAS, Maria Aparecida Soares e SANTOS, Igor Chagas. Singularities of 3-parameter line congruences in R⁴. Proceedings of the Royal Society of Edinburgh, v. 153, n. 3, p. 1045-1070, 2023Tradução . . Disponível em: https://doi.org/10.1017/prm.2022.41. Acesso em: 08 out. 2025.
    • APA

      Lopes, D., Ruas, M. A. S., & Santos, I. C. (2023). Singularities of 3-parameter line congruences in R⁴. Proceedings of the Royal Society of Edinburgh, 153( 3), 1045-1070. doi:10.1017/prm.2022.41
    • NLM

      Lopes D, Ruas MAS, Santos IC. Singularities of 3-parameter line congruences in R⁴ [Internet]. Proceedings of the Royal Society of Edinburgh. 2023 ; 153( 3): 1045-1070.[citado 2025 out. 08 ] Available from: https://doi.org/10.1017/prm.2022.41
    • Vancouver

      Lopes D, Ruas MAS, Santos IC. Singularities of 3-parameter line congruences in R⁴ [Internet]. Proceedings of the Royal Society of Edinburgh. 2023 ; 153( 3): 1045-1070.[citado 2025 out. 08 ] Available from: https://doi.org/10.1017/prm.2022.41
  • Source: Mathematical Modelling of Natural Phenomena. Unidade: ICMC

    Subjects: MODELOS MATEMÁTICOS, EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, CÉLULAS-TRONCO, NEOPLASIAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MEACCI, Luca e PRIMICERIO, Mario. Interaction between crowding and growth in tumours with stem cells: conceptual mathematical modelling. Mathematical Modelling of Natural Phenomena, v. 18, p. 1-22, 2023Tradução . . Disponível em: https://doi.org/10.1051/mmnp/2023011. Acesso em: 08 out. 2025.
    • APA

      Meacci, L., & Primicerio, M. (2023). Interaction between crowding and growth in tumours with stem cells: conceptual mathematical modelling. Mathematical Modelling of Natural Phenomena, 18, 1-22. doi:10.1051/mmnp/2023011
    • NLM

      Meacci L, Primicerio M. Interaction between crowding and growth in tumours with stem cells: conceptual mathematical modelling [Internet]. Mathematical Modelling of Natural Phenomena. 2023 ; 18 1-22.[citado 2025 out. 08 ] Available from: https://doi.org/10.1051/mmnp/2023011
    • Vancouver

      Meacci L, Primicerio M. Interaction between crowding and growth in tumours with stem cells: conceptual mathematical modelling [Internet]. Mathematical Modelling of Natural Phenomena. 2023 ; 18 1-22.[citado 2025 out. 08 ] Available from: https://doi.org/10.1051/mmnp/2023011
  • Source: Results in Mathematics. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, OPERADORES LINEARES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, Flank David Morais et al. A note on the spectral analysis of some fourth-order differential equations with a semigroup approach. Results in Mathematics, v. 78, n. 6, p. 1-14, 2023Tradução . . Disponível em: https://doi.org/10.1007/s00025-023-01999-z. Acesso em: 08 out. 2025.
    • APA

      Bezerra, F. D. M., Santos, L. A., Silva, M. J. M. da, & Takaessu Junior, C. R. (2023). A note on the spectral analysis of some fourth-order differential equations with a semigroup approach. Results in Mathematics, 78( 6), 1-14. doi:10.1007/s00025-023-01999-z
    • NLM

      Bezerra FDM, Santos LA, Silva MJM da, Takaessu Junior CR. A note on the spectral analysis of some fourth-order differential equations with a semigroup approach [Internet]. Results in Mathematics. 2023 ; 78( 6): 1-14.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00025-023-01999-z
    • Vancouver

      Bezerra FDM, Santos LA, Silva MJM da, Takaessu Junior CR. A note on the spectral analysis of some fourth-order differential equations with a semigroup approach [Internet]. Results in Mathematics. 2023 ; 78( 6): 1-14.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00025-023-01999-z
  • Source: Journal of Non-Newtonian Fluid Mechanics. Unidade: ICMC

    Subjects: MECÂNICA DOS FLUÍDOS COMPUTACIONAL, MÉTODOS NUMÉRICOS EM DINÂMICA DE FLUÍDOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FRANÇA, Hugo Leonardo e OISHI, Cassio Machiaveli e THOMPSON, Roney L. Numerical investigation of shear-thinning and viscoelastic binary droplet collision. Journal of Non-Newtonian Fluid Mechanics, v. 302, p. 1-15, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jnnfm.2022.104750. Acesso em: 08 out. 2025.
    • APA

      França, H. L., Oishi, C. M., & Thompson, R. L. (2022). Numerical investigation of shear-thinning and viscoelastic binary droplet collision. Journal of Non-Newtonian Fluid Mechanics, 302, 1-15. doi:10.1016/j.jnnfm.2022.104750
    • NLM

      França HL, Oishi CM, Thompson RL. Numerical investigation of shear-thinning and viscoelastic binary droplet collision [Internet]. Journal of Non-Newtonian Fluid Mechanics. 2022 ; 302 1-15.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jnnfm.2022.104750
    • Vancouver

      França HL, Oishi CM, Thompson RL. Numerical investigation of shear-thinning and viscoelastic binary droplet collision [Internet]. Journal of Non-Newtonian Fluid Mechanics. 2022 ; 302 1-15.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jnnfm.2022.104750
  • Source: Stochastics and Dynamics. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS ESTOCÁSTICAS, ATRATORES, SISTEMAS DISSIPATIVO, EQUAÇÕES DA ONDA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARABALLO, Tomás et al. Continuity and topological structural stability for nonautonomous random attractors. Stochastics and Dynamics, v. No 2022, n. 7, p. 2240024-1-2240024-28, 2022Tradução . . Disponível em: https://doi.org/10.1142/S021949372240024X. Acesso em: 08 out. 2025.
    • APA

      Caraballo, T., Langa, J. A., Carvalho, A. N. de, & Oliveira-Sousa, A. do N. (2022). Continuity and topological structural stability for nonautonomous random attractors. Stochastics and Dynamics, No 2022( 7), 2240024-1-2240024-28. doi:10.1142/S021949372240024X
    • NLM

      Caraballo T, Langa JA, Carvalho AN de, Oliveira-Sousa A do N. Continuity and topological structural stability for nonautonomous random attractors [Internet]. Stochastics and Dynamics. 2022 ; No 2022( 7): 2240024-1-2240024-28.[citado 2025 out. 08 ] Available from: https://doi.org/10.1142/S021949372240024X
    • Vancouver

      Caraballo T, Langa JA, Carvalho AN de, Oliveira-Sousa A do N. Continuity and topological structural stability for nonautonomous random attractors [Internet]. Stochastics and Dynamics. 2022 ; No 2022( 7): 2240024-1-2240024-28.[citado 2025 out. 08 ] Available from: https://doi.org/10.1142/S021949372240024X
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, TEORIA DA BIFURCAÇÃO, ATRATORES, OPERADORES

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e MOREIRA, Estefani Moraes. Stability and hyperbolicity of equilibria for a scalar nonlocal one-dimensional quasilinear parabolic problem. Journal of Differential Equations, v. No 2021, p. 312-336, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.07.044. Acesso em: 08 out. 2025.
    • APA

      Carvalho, A. N. de, & Moreira, E. M. (2021). Stability and hyperbolicity of equilibria for a scalar nonlocal one-dimensional quasilinear parabolic problem. Journal of Differential Equations, No 2021, 312-336. doi:10.1016/j.jde.2021.07.044
    • NLM

      Carvalho AN de, Moreira EM. Stability and hyperbolicity of equilibria for a scalar nonlocal one-dimensional quasilinear parabolic problem [Internet]. Journal of Differential Equations. 2021 ; No 2021 312-336.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2021.07.044
    • Vancouver

      Carvalho AN de, Moreira EM. Stability and hyperbolicity of equilibria for a scalar nonlocal one-dimensional quasilinear parabolic problem [Internet]. Journal of Differential Equations. 2021 ; No 2021 312-336.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2021.07.044

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025