Filtros : "Financiamento FAPESP" "Financiamento DFG" "FFCLRP" Limpar

Filtros



Refine with date range


  • Source: ACS Catalysis. Unidades: FFCLRP, IQ

    Subjects: OURO, RÓDIO, CATÁLISE, NANOPARTÍCULAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Maria Paula de Souza et al. Gold−rhodium nanoflowers for the plasmon-enhanced CO2 electroreduction reaction upon visible light. ACS Catalysis, v. 13, n. 1, p. 267−279, 2023Tradução . . Disponível em: https://doi.org/10.1021/acscatal.2c04207. Acesso em: 08 out. 2025.
    • APA

      Rodrigues, M. P. de S., Dourado, A. H. B., Oliveira Filho, A. G. S. de, Batista, A. P. de L., Feil, M., Krischer, K., & Torresi, S. I. C. de. (2023). Gold−rhodium nanoflowers for the plasmon-enhanced CO2 electroreduction reaction upon visible light. ACS Catalysis, 13( 1), 267−279. doi:10.1021/acscatal.2c04207
    • NLM

      Rodrigues MP de S, Dourado AHB, Oliveira Filho AGS de, Batista AP de L, Feil M, Krischer K, Torresi SIC de. Gold−rhodium nanoflowers for the plasmon-enhanced CO2 electroreduction reaction upon visible light [Internet]. ACS Catalysis. 2023 ; 13( 1): 267−279.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acscatal.2c04207
    • Vancouver

      Rodrigues MP de S, Dourado AHB, Oliveira Filho AGS de, Batista AP de L, Feil M, Krischer K, Torresi SIC de. Gold−rhodium nanoflowers for the plasmon-enhanced CO2 electroreduction reaction upon visible light [Internet]. ACS Catalysis. 2023 ; 13( 1): 267−279.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acscatal.2c04207
  • Source: Journal of Biological Engineering. Unidade: FFCLRP

    Subjects: NANOPARTÍCULAS, RADIAÇÃO IONIZANTE, CAMPO MAGNÉTICO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOARES, Guilherme et al. Quantitative imaging of magnetic nanoparticles in an unshielded environment using a large AC susceptibility array. Journal of Biological Engineering, v. 16, n. 1, 2022Tradução . . Disponível em: https://doi.org/10.1186/s13036-022-00305-9. Acesso em: 08 out. 2025.
    • APA

      Soares, G., Pinto, L., Liebl, M., Biasotti, G., Prospero, A., Stoppa, E., et al. (2022). Quantitative imaging of magnetic nanoparticles in an unshielded environment using a large AC susceptibility array. Journal of Biological Engineering, 16( 1). doi:10.1186/s13036-022-00305-9
    • NLM

      Soares G, Pinto L, Liebl M, Biasotti G, Prospero A, Stoppa E, Bakuzis A, Baffa O, Wiekhorst F, Miranda JRA. Quantitative imaging of magnetic nanoparticles in an unshielded environment using a large AC susceptibility array [Internet]. Journal of Biological Engineering. 2022 ; 16( 1):[citado 2025 out. 08 ] Available from: https://doi.org/10.1186/s13036-022-00305-9
    • Vancouver

      Soares G, Pinto L, Liebl M, Biasotti G, Prospero A, Stoppa E, Bakuzis A, Baffa O, Wiekhorst F, Miranda JRA. Quantitative imaging of magnetic nanoparticles in an unshielded environment using a large AC susceptibility array [Internet]. Journal of Biological Engineering. 2022 ; 16( 1):[citado 2025 out. 08 ] Available from: https://doi.org/10.1186/s13036-022-00305-9
  • Source: Journal of Chemical Information and Modeling. Unidade: FFCLRP

    Subjects: APRENDIZADO COMPUTACIONAL, MODELOS MATEMÁTICOS, ESTRUTURA MOLECULAR (QUÍMICA TEÓRICA)

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOARES, Thereza A. et al. The (Re)-evolution of Quantitative Structure–Activity Relationship (QSAR) studies propelled by the surge of machine learning methods [Editorial]. Journal of Chemical Information and Modeling. Washington: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Disponível em: https://doi.org/10.1021/acs.jcim.2c01422. Acesso em: 08 out. 2025. , 2022
    • APA

      Soares, T. A., Alves, A. F. N., Mazzolari, A., Ruggiu, F., Wei, G. -W., & Merz, K. (2022). The (Re)-evolution of Quantitative Structure–Activity Relationship (QSAR) studies propelled by the surge of machine learning methods [Editorial]. Journal of Chemical Information and Modeling. Washington: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. doi:10.1021/acs.jcim.2c01422
    • NLM

      Soares TA, Alves AFN, Mazzolari A, Ruggiu F, Wei G-W, Merz K. The (Re)-evolution of Quantitative Structure–Activity Relationship (QSAR) studies propelled by the surge of machine learning methods [Editorial] [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 22): 5317-5320.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.2c01422
    • Vancouver

      Soares TA, Alves AFN, Mazzolari A, Ruggiu F, Wei G-W, Merz K. The (Re)-evolution of Quantitative Structure–Activity Relationship (QSAR) studies propelled by the surge of machine learning methods [Editorial] [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 22): 5317-5320.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.2c01422
  • Source: European Physical Journal - Special Topics. Unidades: FFCLRP, ICMC

    Subjects: REDES COMPLEXAS, SISTEMAS DINÂMICOS, ALGORITMOS ÚTEIS E ESPECÍFICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VERRI, Filipe Alves Neto et al. Network community detection via iterative edge removal in a flocking-like system. European Physical Journal - Special Topics, v. 230, n. 14-15, p. 2843-2855, 2021Tradução . . Disponível em: https://doi.org/10.1140/epjs/s11734-021-00154-5. Acesso em: 08 out. 2025.
    • APA

      Verri, F. A. N., Gueleri, R. A., Qiusheng, Z., Junbao, Z., & Liang, Z. (2021). Network community detection via iterative edge removal in a flocking-like system. European Physical Journal - Special Topics, 230( 14-15), 2843-2855. doi:10.1140/epjs/s11734-021-00154-5
    • NLM

      Verri FAN, Gueleri RA, Qiusheng Z, Junbao Z, Liang Z. Network community detection via iterative edge removal in a flocking-like system [Internet]. European Physical Journal - Special Topics. 2021 ; 230( 14-15): 2843-2855.[citado 2025 out. 08 ] Available from: https://doi.org/10.1140/epjs/s11734-021-00154-5
    • Vancouver

      Verri FAN, Gueleri RA, Qiusheng Z, Junbao Z, Liang Z. Network community detection via iterative edge removal in a flocking-like system [Internet]. European Physical Journal - Special Topics. 2021 ; 230( 14-15): 2843-2855.[citado 2025 out. 08 ] Available from: https://doi.org/10.1140/epjs/s11734-021-00154-5
  • Source: European Physical Journal - Special Topics. Unidades: FFCLRP, ICMC

    Subjects: REDES COMPLEXAS, ANÁLISE DE SÉRIES TEMPORAIS, RECONHECIMENTO DE PADRÕES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANGHINONI, Leandro et al. Time series pattern identification by hierarchical community detection. European Physical Journal - Special Topics, v. 230, n. 14-15, p. 2775-2782, 2021Tradução . . Disponível em: https://doi.org/10.1140/epjs/s11734-021-00163-4. Acesso em: 08 out. 2025.
    • APA

      Anghinoni, L., Vega-Oliveros, D. A., Silva, T. C., & Liang, Z. (2021). Time series pattern identification by hierarchical community detection. European Physical Journal - Special Topics, 230( 14-15), 2775-2782. doi:10.1140/epjs/s11734-021-00163-4
    • NLM

      Anghinoni L, Vega-Oliveros DA, Silva TC, Liang Z. Time series pattern identification by hierarchical community detection [Internet]. European Physical Journal - Special Topics. 2021 ; 230( 14-15): 2775-2782.[citado 2025 out. 08 ] Available from: https://doi.org/10.1140/epjs/s11734-021-00163-4
    • Vancouver

      Anghinoni L, Vega-Oliveros DA, Silva TC, Liang Z. Time series pattern identification by hierarchical community detection [Internet]. European Physical Journal - Special Topics. 2021 ; 230( 14-15): 2775-2782.[citado 2025 out. 08 ] Available from: https://doi.org/10.1140/epjs/s11734-021-00163-4
  • Source: The European Physical Journal Special Topics. Unidade: FFCLRP

    Subjects: REDES COMPLEXAS, NEUROCIÊNCIAS, PROCESSOS ESTOCÁSTICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      YANCHUK, Serhiy et al. Dynamical phenomena in complex networks: fundamentals and applications. The European Physical Journal Special Topics, v. 230, p. 2711-2716, 2021Tradução . . Disponível em: https://doi.org/10.1140/epjs/s11734-021-00282-y. Acesso em: 08 out. 2025.
    • APA

      Yanchuk, S., Roque, A. C., Macau, E. E. N., & Kurths, J. (2021). Dynamical phenomena in complex networks: fundamentals and applications. The European Physical Journal Special Topics, 230, 2711-2716. doi:10.1140/epjs/s11734-021-00282-y
    • NLM

      Yanchuk S, Roque AC, Macau EEN, Kurths J. Dynamical phenomena in complex networks: fundamentals and applications [Internet]. The European Physical Journal Special Topics. 2021 ; 230 2711-2716.[citado 2025 out. 08 ] Available from: https://doi.org/10.1140/epjs/s11734-021-00282-y
    • Vancouver

      Yanchuk S, Roque AC, Macau EEN, Kurths J. Dynamical phenomena in complex networks: fundamentals and applications [Internet]. The European Physical Journal Special Topics. 2021 ; 230 2711-2716.[citado 2025 out. 08 ] Available from: https://doi.org/10.1140/epjs/s11734-021-00282-y
  • Source: Insectes Sociaux. Unidade: FFCLRP

    Assunto: FORMIGAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GLASER, S. M. et al. Tandem communication improves ant foraging success in a highly competitive tropical habitat. Insectes Sociaux, v. 68, n. 2-3, p. 161-172, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00040-021-00810-y. Acesso em: 08 out. 2025.
    • APA

      Glaser, S. M., Feitosa, R. M., Koch, A., Goß, N., Nascimento, F. S. do, & Grüter, C. (2021). Tandem communication improves ant foraging success in a highly competitive tropical habitat. Insectes Sociaux, 68( 2-3), 161-172. doi:10.1007/s00040-021-00810-y
    • NLM

      Glaser SM, Feitosa RM, Koch A, Goß N, Nascimento FS do, Grüter C. Tandem communication improves ant foraging success in a highly competitive tropical habitat [Internet]. Insectes Sociaux. 2021 ; 68( 2-3): 161-172.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00040-021-00810-y
    • Vancouver

      Glaser SM, Feitosa RM, Koch A, Goß N, Nascimento FS do, Grüter C. Tandem communication improves ant foraging success in a highly competitive tropical habitat [Internet]. Insectes Sociaux. 2021 ; 68( 2-3): 161-172.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00040-021-00810-y
  • Source: Computers & Geosciences. Unidade: FFCLRP

    Subjects: INCÊNDIOS FLORESTAIS, QUEIMADA, GEOCIÊNCIAS, MUDANÇA CLIMÁTICA, ANÁLISE DE SÉRIES TEMPORAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, Leonardo N. et al. Global fire season severity analysis and forecasting. Computers & Geosciences, v. 134, p. 1-9, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.cageo.2019.104339. Acesso em: 08 out. 2025.
    • APA

      Ferreira, L. N., Vega-Oliveros, D. A., Liang, Z., Cardoso, M. F., & Macau, E. E. N. (2020). Global fire season severity analysis and forecasting. Computers & Geosciences, 134, 1-9. doi:10.1016/j.cageo.2019.104339
    • NLM

      Ferreira LN, Vega-Oliveros DA, Liang Z, Cardoso MF, Macau EEN. Global fire season severity analysis and forecasting [Internet]. Computers & Geosciences. 2020 ; 134 1-9.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cageo.2019.104339
    • Vancouver

      Ferreira LN, Vega-Oliveros DA, Liang Z, Cardoso MF, Macau EEN. Global fire season severity analysis and forecasting [Internet]. Computers & Geosciences. 2020 ; 134 1-9.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cageo.2019.104339
  • Source: Journal of Chemical Theory and Computation. Unidade: FFCLRP

    Subjects: DIAGNÓSTICO POR IMAGEM, MOLÉCULA, MATERIAIS, METAIS, ELEMENTOS DE TRANSIÇÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AOTO, Yuri A. et al. How to arrive at accurate benchmark values for transition metal compounds: computation or experiment?. Journal of Chemical Theory and Computation, v. 13, n. 11, p. 5291-5316, 2017Tradução . . Disponível em: https://doi.org/10.1021/acs.jctc.7b00688. Acesso em: 08 out. 2025.
    • APA

      Aoto, Y. A., Batista, A. P. de L., Köhn, A., & Oliveira Filho, A. G. S. de. (2017). How to arrive at accurate benchmark values for transition metal compounds: computation or experiment? Journal of Chemical Theory and Computation, 13( 11), 5291-5316. doi:10.1021/acs.jctc.7b00688
    • NLM

      Aoto YA, Batista AP de L, Köhn A, Oliveira Filho AGS de. How to arrive at accurate benchmark values for transition metal compounds: computation or experiment? [Internet]. Journal of Chemical Theory and Computation. 2017 ; 13( 11): 5291-5316.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jctc.7b00688
    • Vancouver

      Aoto YA, Batista AP de L, Köhn A, Oliveira Filho AGS de. How to arrive at accurate benchmark values for transition metal compounds: computation or experiment? [Internet]. Journal of Chemical Theory and Computation. 2017 ; 13( 11): 5291-5316.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jctc.7b00688

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025