Filtros : "Financiamento FAPESP" "ICMC" "EQUAÇÕES DIFERENCIAIS PARCIAIS" Limpar

Filtros



Refine with date range


  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES, SISTEMAS DISSIPATIVO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AZEVEDO, Vinícius Tavares e LÓPEZ-LÁZARO, Heraclio e TAKAESSU JUNIOR, Carlos Roberto. Existence and continuity of pullback exponential attractors for a family of non-classical reaction-diffusion equations. Communications in Nonlinear Science and Numerical Simulation, v. 152, n. Ja 2026, p. 1-12, 2026Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2025.109198. Acesso em: 08 out. 2025.
    • APA

      Azevedo, V. T., López-Lázaro, H., & Takaessu Junior, C. R. (2026). Existence and continuity of pullback exponential attractors for a family of non-classical reaction-diffusion equations. Communications in Nonlinear Science and Numerical Simulation, 152( Ja 2026), 1-12. doi:10.1016/j.cnsns.2025.109198
    • NLM

      Azevedo VT, López-Lázaro H, Takaessu Junior CR. Existence and continuity of pullback exponential attractors for a family of non-classical reaction-diffusion equations [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2026 ; 152( Ja 2026): 1-12.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2025.109198
    • Vancouver

      Azevedo VT, López-Lázaro H, Takaessu Junior CR. Existence and continuity of pullback exponential attractors for a family of non-classical reaction-diffusion equations [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2026 ; 152( Ja 2026): 1-12.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2025.109198
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, SISTEMAS DISSIPATIVO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de et al. A unified theory for inertial manifolds, saddle point property and exponential dichotomy. Journal of Differential Equations, v. 416, n. Ja 2025, p. 1462-1495, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2024.10.029. Acesso em: 08 out. 2025.
    • APA

      Carvalho, A. N. de, Lappicy, P., Moreira, E. M., & Oliveira-Sousa, A. do N. (2025). A unified theory for inertial manifolds, saddle point property and exponential dichotomy. Journal of Differential Equations, 416( Ja 2025), 1462-1495. doi:10.1016/j.jde.2024.10.029
    • NLM

      Carvalho AN de, Lappicy P, Moreira EM, Oliveira-Sousa A do N. A unified theory for inertial manifolds, saddle point property and exponential dichotomy [Internet]. Journal of Differential Equations. 2025 ; 416( Ja 2025): 1462-1495.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2024.10.029
    • Vancouver

      Carvalho AN de, Lappicy P, Moreira EM, Oliveira-Sousa A do N. A unified theory for inertial manifolds, saddle point property and exponential dichotomy [Internet]. Journal of Differential Equations. 2025 ; 416( Ja 2025): 1462-1495.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2024.10.029
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLUZI, Maykel et al. Long-time behavior for semilinear equation with time-dependent and almost sectorial linear operator. Journal of Dynamics and Differential Equations, v. 37, n. 3, p. 2565-2600, 2025Tradução . . Disponível em: https://doi.org/10.1007/s10884-024-10378-3. Acesso em: 08 out. 2025.
    • APA

      Belluzi, M., Caraballo, T., Nascimento, M. J. D., & Schiabel, K. (2025). Long-time behavior for semilinear equation with time-dependent and almost sectorial linear operator. Journal of Dynamics and Differential Equations, 37( 3), 2565-2600. doi:10.1007/s10884-024-10378-3
    • NLM

      Belluzi M, Caraballo T, Nascimento MJD, Schiabel K. Long-time behavior for semilinear equation with time-dependent and almost sectorial linear operator [Internet]. Journal of Dynamics and Differential Equations. 2025 ; 37( 3): 2565-2600.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s10884-024-10378-3
    • Vancouver

      Belluzi M, Caraballo T, Nascimento MJD, Schiabel K. Long-time behavior for semilinear equation with time-dependent and almost sectorial linear operator [Internet]. Journal of Dynamics and Differential Equations. 2025 ; 37( 3): 2565-2600.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s10884-024-10378-3
  • Source: Applied Mathematics and Optimization. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, OPERADORES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLUZI, Maykel e BONOTTO, Everaldo de Mello e NASCIMENTO, Marcelo José Dias. Schur decomposition for unbounded matrix operator connected with fractional powers and semigroup generation. Applied Mathematics and Optimization, v. 92, p. 1-29, 2025Tradução . . Disponível em: https://doi.org/10.1007/s00245-025-10331-w. Acesso em: 08 out. 2025.
    • APA

      Belluzi, M., Bonotto, E. de M., & Nascimento, M. J. D. (2025). Schur decomposition for unbounded matrix operator connected with fractional powers and semigroup generation. Applied Mathematics and Optimization, 92, 1-29. doi:10.1007/s00245-025-10331-w
    • NLM

      Belluzi M, Bonotto E de M, Nascimento MJD. Schur decomposition for unbounded matrix operator connected with fractional powers and semigroup generation [Internet]. Applied Mathematics and Optimization. 2025 ; 92 1-29.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00245-025-10331-w
    • Vancouver

      Belluzi M, Bonotto E de M, Nascimento MJD. Schur decomposition for unbounded matrix operator connected with fractional powers and semigroup generation [Internet]. Applied Mathematics and Optimization. 2025 ; 92 1-29.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00245-025-10331-w
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS, OPERADORES NÃO LINEARES

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLUZI, Maykel et al. Continuity of the unbounded attractors for a fractional perturbation of a scalar reaction-diffusion equation. Journal of Dynamics and Differential Equations, v. 37, n. Ju 2025, p. 1917-1932, 2025Tradução . . Disponível em: https://doi.org/10.1007/s10884-023-10341-8. Acesso em: 08 out. 2025.
    • APA

      Belluzi, M., Bortolan, M. C., Castro, U., & Fernandes, J. (2025). Continuity of the unbounded attractors for a fractional perturbation of a scalar reaction-diffusion equation. Journal of Dynamics and Differential Equations, 37( Ju 2025), 1917-1932. doi:10.1007/s10884-023-10341-8
    • NLM

      Belluzi M, Bortolan MC, Castro U, Fernandes J. Continuity of the unbounded attractors for a fractional perturbation of a scalar reaction-diffusion equation [Internet]. Journal of Dynamics and Differential Equations. 2025 ; 37( Ju 2025): 1917-1932.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s10884-023-10341-8
    • Vancouver

      Belluzi M, Bortolan MC, Castro U, Fernandes J. Continuity of the unbounded attractors for a fractional perturbation of a scalar reaction-diffusion equation [Internet]. Journal of Dynamics and Differential Equations. 2025 ; 37( Ju 2025): 1917-1932.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s10884-023-10341-8
  • Source: Journal of Differential Equations. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LAGUNA, Renato Andrielli e ZANI, Sérgio Luís. Singular solutions of complex vector fields on the Möbius band. Journal of Differential Equations, v. 442, p. 1-39, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2025.113493. Acesso em: 08 out. 2025.
    • APA

      Laguna, R. A., & Zani, S. L. (2025). Singular solutions of complex vector fields on the Möbius band. Journal of Differential Equations, 442, 1-39. doi:10.1016/j.jde.2025.113493
    • NLM

      Laguna RA, Zani SL. Singular solutions of complex vector fields on the Möbius band [Internet]. Journal of Differential Equations. 2025 ; 442 1-39.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2025.113493
    • Vancouver

      Laguna RA, Zani SL. Singular solutions of complex vector fields on the Möbius band [Internet]. Journal of Differential Equations. 2025 ; 442 1-39.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2025.113493
  • Source: Discrete and Continuous Dynamical Systems : Series B. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, OPERADORES LINEARES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, Flank David Morais et al. Spectral analysis and exponential stability of a generalized fractional Moore-Gibson-Thompson equation. Discrete and Continuous Dynamical Systems : Series B, v. 30, n. 2, p. 496-508, 2025Tradução . . Disponível em: https://doi.org/10.3934/dcdsb.2024098. Acesso em: 08 out. 2025.
    • APA

      Bezerra, F. D. M., Santos, L. A., Silva, M., & Takaessu Junior, C. R. (2025). Spectral analysis and exponential stability of a generalized fractional Moore-Gibson-Thompson equation. Discrete and Continuous Dynamical Systems : Series B, 30( 2), 496-508. doi:10.3934/dcdsb.2024098
    • NLM

      Bezerra FDM, Santos LA, Silva M, Takaessu Junior CR. Spectral analysis and exponential stability of a generalized fractional Moore-Gibson-Thompson equation [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2025 ; 30( 2): 496-508.[citado 2025 out. 08 ] Available from: https://doi.org/10.3934/dcdsb.2024098
    • Vancouver

      Bezerra FDM, Santos LA, Silva M, Takaessu Junior CR. Spectral analysis and exponential stability of a generalized fractional Moore-Gibson-Thompson equation [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2025 ; 30( 2): 496-508.[citado 2025 out. 08 ] Available from: https://doi.org/10.3934/dcdsb.2024098
  • Source: SIAM Journal on Mathematical Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, CÁLCULO DE VARIAÇÕES

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDRADE, Pêdra Daricléa Santos et al. Spectral partition problems with volume and inclusion constraints. SIAM Journal on Mathematical Analysis, v. 56, n. 6, p. 7136-7169, 2024Tradução . . Disponível em: https://doi.org/10.1137/23M161553X. Acesso em: 08 out. 2025.
    • APA

      Andrade, P. D. S., Moreira dos Santos, E., Santos, M., & Tavares, H. (2024). Spectral partition problems with volume and inclusion constraints. SIAM Journal on Mathematical Analysis, 56( 6), 7136-7169. doi:10.1137/23M161553X
    • NLM

      Andrade PDS, Moreira dos Santos E, Santos M, Tavares H. Spectral partition problems with volume and inclusion constraints [Internet]. SIAM Journal on Mathematical Analysis. 2024 ; 56( 6): 7136-7169.[citado 2025 out. 08 ] Available from: https://doi.org/10.1137/23M161553X
    • Vancouver

      Andrade PDS, Moreira dos Santos E, Santos M, Tavares H. Spectral partition problems with volume and inclusion constraints [Internet]. SIAM Journal on Mathematical Analysis. 2024 ; 56( 6): 7136-7169.[citado 2025 out. 08 ] Available from: https://doi.org/10.1137/23M161553X
  • Source: Journal of the Institute of Mathematics of Jussieu. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, GRUPOS DE LIE, OPERADORES

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAÚJO, Gabriel Cueva Candido Soares de e FERRA, Igor Ambo e RAGOGNETTE, Luis Fernando. Global hypoellipticity of sums of squares on compact manifolds. Journal of the Institute of Mathematics of Jussieu, v. 23, n. 5, p. 2405-2439, 2024Tradução . . Disponível em: https://doi.org/10.1017/S147474802300049X. Acesso em: 08 out. 2025.
    • APA

      Araújo, G. C. C. S. de, Ferra, I. A., & Ragognette, L. F. (2024). Global hypoellipticity of sums of squares on compact manifolds. Journal of the Institute of Mathematics of Jussieu, 23( 5), 2405-2439. doi:10.1017/S147474802300049X
    • NLM

      Araújo GCCS de, Ferra IA, Ragognette LF. Global hypoellipticity of sums of squares on compact manifolds [Internet]. Journal of the Institute of Mathematics of Jussieu. 2024 ; 23( 5): 2405-2439.[citado 2025 out. 08 ] Available from: https://doi.org/10.1017/S147474802300049X
    • Vancouver

      Araújo GCCS de, Ferra IA, Ragognette LF. Global hypoellipticity of sums of squares on compact manifolds [Internet]. Journal of the Institute of Mathematics of Jussieu. 2024 ; 23( 5): 2405-2439.[citado 2025 out. 08 ] Available from: https://doi.org/10.1017/S147474802300049X
  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidade: ICMC

    Subjects: ATRATORES, MECÂNICA DOS FLUÍDOS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LÓPEZ-LÁZARO, Heraclio e MARÍN-RUBIO, Pedro e PLANAS, Gabriela. Non-Newtonian incompressible fluids with nonlinear shear tensor and hereditary conditions. Communications in Nonlinear Science and Numerical Simulation, v. No 2024, p. 1-20, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2024.108204. Acesso em: 08 out. 2025.
    • APA

      López-Lázaro, H., Marín-Rubio, P., & Planas, G. (2024). Non-Newtonian incompressible fluids with nonlinear shear tensor and hereditary conditions. Communications in Nonlinear Science and Numerical Simulation, No 2024, 1-20. doi:10.1016/j.cnsns.2024.108204
    • NLM

      López-Lázaro H, Marín-Rubio P, Planas G. Non-Newtonian incompressible fluids with nonlinear shear tensor and hereditary conditions [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2024 ; No 2024 1-20.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2024.108204
    • Vancouver

      López-Lázaro H, Marín-Rubio P, Planas G. Non-Newtonian incompressible fluids with nonlinear shear tensor and hereditary conditions [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2024 ; No 2024 1-20.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2024.108204
  • Source: Mathematische Nachrichten. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, OPERADORES POSITIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLUZI, Maykel e BEZERRA, Flank David Morais e NASCIMENTO, Marcelo José Dias. On coupled semilinear evolution systems: techniques on fractional powers of 4 x 4 matrices and applications. Mathematische Nachrichten, v. 297, n. 9, p. 3288-3312, 2024Tradução . . Disponível em: https://doi.org/10.1002/mana.202300318. Acesso em: 08 out. 2025.
    • APA

      Belluzi, M., Bezerra, F. D. M., & Nascimento, M. J. D. (2024). On coupled semilinear evolution systems: techniques on fractional powers of 4 x 4 matrices and applications. Mathematische Nachrichten, 297( 9), 3288-3312. doi:10.1002/mana.202300318
    • NLM

      Belluzi M, Bezerra FDM, Nascimento MJD. On coupled semilinear evolution systems: techniques on fractional powers of 4 x 4 matrices and applications [Internet]. Mathematische Nachrichten. 2024 ; 297( 9): 3288-3312.[citado 2025 out. 08 ] Available from: https://doi.org/10.1002/mana.202300318
    • Vancouver

      Belluzi M, Bezerra FDM, Nascimento MJD. On coupled semilinear evolution systems: techniques on fractional powers of 4 x 4 matrices and applications [Internet]. Mathematische Nachrichten. 2024 ; 297( 9): 3288-3312.[citado 2025 out. 08 ] Available from: https://doi.org/10.1002/mana.202300318
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BANAṤKIEWICZ, Jakub et al. Autonomous and non-autonomous unbounded attractors in evolutionary problems. Journal of Dynamics and Differential Equations, v. 36, n. 4, p. 3481-3534, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10884-022-10239-x. Acesso em: 08 out. 2025.
    • APA

      Banaṥkiewicz, J., Carvalho, A. N. de, Garcia-Fuentes, J., & Kalita, P. (2024). Autonomous and non-autonomous unbounded attractors in evolutionary problems. Journal of Dynamics and Differential Equations, 36( 4), 3481-3534. doi:10.1007/s10884-022-10239-x
    • NLM

      Banaṥkiewicz J, Carvalho AN de, Garcia-Fuentes J, Kalita P. Autonomous and non-autonomous unbounded attractors in evolutionary problems [Internet]. Journal of Dynamics and Differential Equations. 2024 ; 36( 4): 3481-3534.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s10884-022-10239-x
    • Vancouver

      Banaṥkiewicz J, Carvalho AN de, Garcia-Fuentes J, Kalita P. Autonomous and non-autonomous unbounded attractors in evolutionary problems [Internet]. Journal of Dynamics and Differential Equations. 2024 ; 36( 4): 3481-3534.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s10884-022-10239-x
  • Source: Journal of Evolution Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES, OPERADORES LINEARES

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLUZI, Maykel. Perturbation of parabolic equations with time-dependent linear operators: convergence of linear processes and solutions. Journal of Evolution Equations, v. 24, n. 2, p. 1-37, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00028-024-00961-y. Acesso em: 08 out. 2025.
    • APA

      Belluzi, M. (2024). Perturbation of parabolic equations with time-dependent linear operators: convergence of linear processes and solutions. Journal of Evolution Equations, 24( 2), 1-37. doi:10.1007/s00028-024-00961-y
    • NLM

      Belluzi M. Perturbation of parabolic equations with time-dependent linear operators: convergence of linear processes and solutions [Internet]. Journal of Evolution Equations. 2024 ; 24( 2): 1-37.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00028-024-00961-y
    • Vancouver

      Belluzi M. Perturbation of parabolic equations with time-dependent linear operators: convergence of linear processes and solutions [Internet]. Journal of Evolution Equations. 2024 ; 24( 2): 1-37.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00028-024-00961-y
  • Source: Journal of Mathematical Physics. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, SISTEMAS DINÂMICOS, DINÂMICA DOS FLUÍDOS, EQUAÇÕES DE NAVIER-STOKES

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARABALLO, Tomás e CARVALHO, Alexandre Nolasco de e LÓPEZ-LÁZARO, Heraclio. Nonlinear dynamical analysis for globally modified incompressible non-Newtonian fluids. Journal of Mathematical Physics, v. No 2023, n. 11, p. 112701-1-112701-29, 2023Tradução . . Disponível em: https://doi.org/10.1063/5.0150897. Acesso em: 08 out. 2025.
    • APA

      Caraballo, T., Carvalho, A. N. de, & López-Lázaro, H. (2023). Nonlinear dynamical analysis for globally modified incompressible non-Newtonian fluids. Journal of Mathematical Physics, No 2023( 11), 112701-1-112701-29. doi:10.1063/5.0150897
    • NLM

      Caraballo T, Carvalho AN de, López-Lázaro H. Nonlinear dynamical analysis for globally modified incompressible non-Newtonian fluids [Internet]. Journal of Mathematical Physics. 2023 ; No 2023( 11): 112701-1-112701-29.[citado 2025 out. 08 ] Available from: https://doi.org/10.1063/5.0150897
    • Vancouver

      Caraballo T, Carvalho AN de, López-Lázaro H. Nonlinear dynamical analysis for globally modified incompressible non-Newtonian fluids [Internet]. Journal of Mathematical Physics. 2023 ; No 2023( 11): 112701-1-112701-29.[citado 2025 out. 08 ] Available from: https://doi.org/10.1063/5.0150897
  • Source: Mathematical Modelling of Natural Phenomena. Unidade: ICMC

    Subjects: MODELOS MATEMÁTICOS, EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, CÉLULAS-TRONCO, NEOPLASIAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MEACCI, Luca e PRIMICERIO, Mario. Interaction between crowding and growth in tumours with stem cells: conceptual mathematical modelling. Mathematical Modelling of Natural Phenomena, v. 18, p. 1-22, 2023Tradução . . Disponível em: https://doi.org/10.1051/mmnp/2023011. Acesso em: 08 out. 2025.
    • APA

      Meacci, L., & Primicerio, M. (2023). Interaction between crowding and growth in tumours with stem cells: conceptual mathematical modelling. Mathematical Modelling of Natural Phenomena, 18, 1-22. doi:10.1051/mmnp/2023011
    • NLM

      Meacci L, Primicerio M. Interaction between crowding and growth in tumours with stem cells: conceptual mathematical modelling [Internet]. Mathematical Modelling of Natural Phenomena. 2023 ; 18 1-22.[citado 2025 out. 08 ] Available from: https://doi.org/10.1051/mmnp/2023011
    • Vancouver

      Meacci L, Primicerio M. Interaction between crowding and growth in tumours with stem cells: conceptual mathematical modelling [Internet]. Mathematical Modelling of Natural Phenomena. 2023 ; 18 1-22.[citado 2025 out. 08 ] Available from: https://doi.org/10.1051/mmnp/2023011
  • Source: Calculus of Variations and Partial Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM, TEORIA ESPECTRAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOREIRA DOS SANTOS, Ederson et al. Principal spectral curves for Lane-Emden fully nonlinear type systems and applications. Calculus of Variations and Partial Differential Equations, v. 62, n. 2, p. 1-38, 2023Tradução . . Disponível em: https://doi.org/10.1007/s00526-022-02386-2. Acesso em: 08 out. 2025.
    • APA

      Moreira dos Santos, E., Nornberg, G., Schiera, D., & Tavares, H. (2023). Principal spectral curves for Lane-Emden fully nonlinear type systems and applications. Calculus of Variations and Partial Differential Equations, 62( 2), 1-38. doi:10.1007/s00526-022-02386-2
    • NLM

      Moreira dos Santos E, Nornberg G, Schiera D, Tavares H. Principal spectral curves for Lane-Emden fully nonlinear type systems and applications [Internet]. Calculus of Variations and Partial Differential Equations. 2023 ; 62( 2): 1-38.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00526-022-02386-2
    • Vancouver

      Moreira dos Santos E, Nornberg G, Schiera D, Tavares H. Principal spectral curves for Lane-Emden fully nonlinear type systems and applications [Internet]. Calculus of Variations and Partial Differential Equations. 2023 ; 62( 2): 1-38.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00526-022-02386-2
  • Source: Mathematische Nachrichten. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAÚJO, Gabriel Cueva Candido Soares de e BERGAMASCO, Adalberto Panobianco e DATTORI DA SILVA, Paulo Leandro. Gevrey semiglobal solvability for a class of elliptic vector fields with degeneracies. Mathematische Nachrichten, v. 296, n. 8, p. 3153-3172, 2023Tradução . . Disponível em: https://doi.org/10.1002/mana.202100235. Acesso em: 08 out. 2025.
    • APA

      Araújo, G. C. C. S. de, Bergamasco, A. P., & Dattori da Silva, P. L. (2023). Gevrey semiglobal solvability for a class of elliptic vector fields with degeneracies. Mathematische Nachrichten, 296( 8), 3153-3172. doi:10.1002/mana.202100235
    • NLM

      Araújo GCCS de, Bergamasco AP, Dattori da Silva PL. Gevrey semiglobal solvability for a class of elliptic vector fields with degeneracies [Internet]. Mathematische Nachrichten. 2023 ; 296( 8): 3153-3172.[citado 2025 out. 08 ] Available from: https://doi.org/10.1002/mana.202100235
    • Vancouver

      Araújo GCCS de, Bergamasco AP, Dattori da Silva PL. Gevrey semiglobal solvability for a class of elliptic vector fields with degeneracies [Internet]. Mathematische Nachrichten. 2023 ; 296( 8): 3153-3172.[citado 2025 out. 08 ] Available from: https://doi.org/10.1002/mana.202100235
  • Source: Journal of Geometric Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, OPERADORES DIFERENCIAIS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAÚJO, Gabriel e DATTORI DA SILVA, Paulo Leandro e VICTOR, Bruno de Lessa. Global analytic solvability of involutive systems on compact manifolds. Journal of Geometric Analysis, v. 33, n. 5, p. 1-30, 2023Tradução . . Disponível em: https://doi.org/10.1007/s12220-023-01206-z. Acesso em: 08 out. 2025.
    • APA

      Araújo, G., Dattori da Silva, P. L., & Victor, B. de L. (2023). Global analytic solvability of involutive systems on compact manifolds. Journal of Geometric Analysis, 33( 5), 1-30. doi:10.1007/s12220-023-01206-z
    • NLM

      Araújo G, Dattori da Silva PL, Victor B de L. Global analytic solvability of involutive systems on compact manifolds [Internet]. Journal of Geometric Analysis. 2023 ; 33( 5): 1-30.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s12220-023-01206-z
    • Vancouver

      Araújo G, Dattori da Silva PL, Victor B de L. Global analytic solvability of involutive systems on compact manifolds [Internet]. Journal of Geometric Analysis. 2023 ; 33( 5): 1-30.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s12220-023-01206-z
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: DINÂMICA TOPOLÓGICA, EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORTOLAN, Matheus Cheque et al. Nonautonomous perturbations of Morse-Smale semigroups: stability of the phase diagram. Journal of Dynamics and Differential Equations, v. 34, n. 4, p. 2681-2747, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10884-021-10066-6. Acesso em: 08 out. 2025.
    • APA

      Bortolan, M. C., Carvalho, A. N. de, Langa, J. A., & Raugel, G. (2022). Nonautonomous perturbations of Morse-Smale semigroups: stability of the phase diagram. Journal of Dynamics and Differential Equations, 34( 4), 2681-2747. doi:10.1007/s10884-021-10066-6
    • NLM

      Bortolan MC, Carvalho AN de, Langa JA, Raugel G. Nonautonomous perturbations of Morse-Smale semigroups: stability of the phase diagram [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34( 4): 2681-2747.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s10884-021-10066-6
    • Vancouver

      Bortolan MC, Carvalho AN de, Langa JA, Raugel G. Nonautonomous perturbations of Morse-Smale semigroups: stability of the phase diagram [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34( 4): 2681-2747.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s10884-021-10066-6
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: ESPAÇOS DE BANACH, ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de et al. Finite-dimensional negatively invariant subsets of Banach spaces. Journal of Mathematical Analysis and Applications, v. 509, n. 2, p. 1-21, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2021.125945. Acesso em: 08 out. 2025.
    • APA

      Carvalho, A. N. de, Cunha, A. C., Langa, J. A., & Robinson, J. C. (2022). Finite-dimensional negatively invariant subsets of Banach spaces. Journal of Mathematical Analysis and Applications, 509( 2), 1-21. doi:10.1016/j.jmaa.2021.125945
    • NLM

      Carvalho AN de, Cunha AC, Langa JA, Robinson JC. Finite-dimensional negatively invariant subsets of Banach spaces [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 509( 2): 1-21.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125945
    • Vancouver

      Carvalho AN de, Cunha AC, Langa JA, Robinson JC. Finite-dimensional negatively invariant subsets of Banach spaces [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 509( 2): 1-21.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125945

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025