Filtros : "Financiamento FAPESP" "Journal of Differential Equations" Removido: "2023" Limpar

Filtros



Refine with date range


  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: SISTEMAS HAMILTONIANOS, EQUAÇÃO DE SCHRODINGER

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BAKRANI, Sajjad. Dynamics near homoclinic orbits to a saddle in four-dimensional systems with a first integral and a discrete symmetry. Journal of Differential Equations, v. No 2025, p. 1-33, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2025.113689. Acesso em: 08 out. 2025.
    • APA

      Bakrani, S. (2025). Dynamics near homoclinic orbits to a saddle in four-dimensional systems with a first integral and a discrete symmetry. Journal of Differential Equations, No 2025, 1-33. doi:10.1016/j.jde.2025.113689
    • NLM

      Bakrani S. Dynamics near homoclinic orbits to a saddle in four-dimensional systems with a first integral and a discrete symmetry [Internet]. Journal of Differential Equations. 2025 ; No 2025 1-33.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2025.113689
    • Vancouver

      Bakrani S. Dynamics near homoclinic orbits to a saddle in four-dimensional systems with a first integral and a discrete symmetry [Internet]. Journal of Differential Equations. 2025 ; No 2025 1-33.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2025.113689
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, SISTEMAS DISSIPATIVO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de et al. A unified theory for inertial manifolds, saddle point property and exponential dichotomy. Journal of Differential Equations, v. 416, n. Ja 2025, p. 1462-1495, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2024.10.029. Acesso em: 08 out. 2025.
    • APA

      Carvalho, A. N. de, Lappicy, P., Moreira, E. M., & Oliveira-Sousa, A. do N. (2025). A unified theory for inertial manifolds, saddle point property and exponential dichotomy. Journal of Differential Equations, 416( Ja 2025), 1462-1495. doi:10.1016/j.jde.2024.10.029
    • NLM

      Carvalho AN de, Lappicy P, Moreira EM, Oliveira-Sousa A do N. A unified theory for inertial manifolds, saddle point property and exponential dichotomy [Internet]. Journal of Differential Equations. 2025 ; 416( Ja 2025): 1462-1495.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2024.10.029
    • Vancouver

      Carvalho AN de, Lappicy P, Moreira EM, Oliveira-Sousa A do N. A unified theory for inertial manifolds, saddle point property and exponential dichotomy [Internet]. Journal of Differential Equations. 2025 ; 416( Ja 2025): 1462-1495.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2024.10.029
  • Source: Journal of Differential Equations. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, MÉTODOS VARIACIONAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PICCIONE, Paolo e YANG, Minbo e ZHAO, Shunneng. Quantitative profile decomposition and stability for a nonlocal Sobolev inequality. Journal of Differential Equations, v. 417, p. 64-104, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2024.11.013. Acesso em: 08 out. 2025.
    • APA

      Piccione, P., Yang, M., & Zhao, S. (2025). Quantitative profile decomposition and stability for a nonlocal Sobolev inequality. Journal of Differential Equations, 417, 64-104. doi:10.1016/j.jde.2024.11.013
    • NLM

      Piccione P, Yang M, Zhao S. Quantitative profile decomposition and stability for a nonlocal Sobolev inequality [Internet]. Journal of Differential Equations. 2025 ; 417 64-104.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2024.11.013
    • Vancouver

      Piccione P, Yang M, Zhao S. Quantitative profile decomposition and stability for a nonlocal Sobolev inequality [Internet]. Journal of Differential Equations. 2025 ; 417 64-104.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2024.11.013
  • Source: Journal of Differential Equations. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, TEORIA QUALITATIVA, SISTEMAS DINÂMICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RAGAZZO, Clodoaldo Grotta e NASCIMENTO, Francisco José dos Santos. Global normalizations for centers of planar vector fields. Journal of Differential Equations, v. 415, p. 701-721, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2024.09.053. Acesso em: 08 out. 2025.
    • APA

      Ragazzo, C. G., & Nascimento, F. J. dos S. (2025). Global normalizations for centers of planar vector fields. Journal of Differential Equations, 415, 701-721. doi:10.1016/j.jde.2024.09.053
    • NLM

      Ragazzo CG, Nascimento FJ dos S. Global normalizations for centers of planar vector fields [Internet]. Journal of Differential Equations. 2025 ; 415 701-721.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2024.09.053
    • Vancouver

      Ragazzo CG, Nascimento FJ dos S. Global normalizations for centers of planar vector fields [Internet]. Journal of Differential Equations. 2025 ; 415 701-721.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2024.09.053
  • Source: Journal of Differential Equations. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LAGUNA, Renato Andrielli e ZANI, Sérgio Luís. Singular solutions of complex vector fields on the Möbius band. Journal of Differential Equations, v. 442, p. 1-39, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2025.113493. Acesso em: 08 out. 2025.
    • APA

      Laguna, R. A., & Zani, S. L. (2025). Singular solutions of complex vector fields on the Möbius band. Journal of Differential Equations, 442, 1-39. doi:10.1016/j.jde.2025.113493
    • NLM

      Laguna RA, Zani SL. Singular solutions of complex vector fields on the Möbius band [Internet]. Journal of Differential Equations. 2025 ; 442 1-39.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2025.113493
    • Vancouver

      Laguna RA, Zani SL. Singular solutions of complex vector fields on the Möbius band [Internet]. Journal of Differential Equations. 2025 ; 442 1-39.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2025.113493
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, TEORIA DA OSCILAÇÃO, EQUAÇÕES INTEGRAIS, FUNÇÕES DE UMA VARIÁVEL COMPLEXA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Marielle Aparecida e BONOTTO, Everaldo de Mello e FEDERSON, Marcia. Oscillation theory for linear evolution processes. Journal of Differential Equations, v. 440, p. 1-26, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2025.113464. Acesso em: 08 out. 2025.
    • APA

      Silva, M. A., Bonotto, E. de M., & Federson, M. (2025). Oscillation theory for linear evolution processes. Journal of Differential Equations, 440, 1-26. doi:10.1016/j.jde.2025.113464
    • NLM

      Silva MA, Bonotto E de M, Federson M. Oscillation theory for linear evolution processes [Internet]. Journal of Differential Equations. 2025 ; 440 1-26.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2025.113464
    • Vancouver

      Silva MA, Bonotto E de M, Federson M. Oscillation theory for linear evolution processes [Internet]. Journal of Differential Equations. 2025 ; 440 1-26.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2025.113464
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, GEOMETRIA ALGÉBRICA REAL

    Disponível em 2026-12-01Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DALBELO, Thaís Maria e OLIVEIRA, Regilene Delazari dos Santos e PEREZ, Otavio Henrique. Topological equivalence at infinity of a planar vector field and its principal part defined through Newton polytope. Journal of Differential Equations, v. No 2024, p. 230-253, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2024.06.028. Acesso em: 08 out. 2025.
    • APA

      Dalbelo, T. M., Oliveira, R. D. dos S., & Perez, O. H. (2024). Topological equivalence at infinity of a planar vector field and its principal part defined through Newton polytope. Journal of Differential Equations, No 2024, 230-253. doi:10.1016/j.jde.2024.06.028
    • NLM

      Dalbelo TM, Oliveira RD dos S, Perez OH. Topological equivalence at infinity of a planar vector field and its principal part defined through Newton polytope [Internet]. Journal of Differential Equations. 2024 ; No 2024 230-253.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2024.06.028
    • Vancouver

      Dalbelo TM, Oliveira RD dos S, Perez OH. Topological equivalence at infinity of a planar vector field and its principal part defined through Newton polytope [Internet]. Journal of Differential Equations. 2024 ; No 2024 230-253.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2024.06.028
  • Source: Journal of Differential Equations. Unidade: IME

    Subjects: OPERADORES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NAKASATO, Jean Carlos e PEREIRA, Marcone Corrêa. A reiterated homogenization problem for the p-Laplacian equation in corrugated thin domains. Journal of Differential Equations, v. 392, p. 165-208, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2024.02.017. Acesso em: 08 out. 2025.
    • APA

      Nakasato, J. C., & Pereira, M. C. (2024). A reiterated homogenization problem for the p-Laplacian equation in corrugated thin domains. Journal of Differential Equations, 392, 165-208. doi:10.1016/j.jde.2024.02.017
    • NLM

      Nakasato JC, Pereira MC. A reiterated homogenization problem for the p-Laplacian equation in corrugated thin domains [Internet]. Journal of Differential Equations. 2024 ; 392 165-208.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2024.02.017
    • Vancouver

      Nakasato JC, Pereira MC. A reiterated homogenization problem for the p-Laplacian equation in corrugated thin domains [Internet]. Journal of Differential Equations. 2024 ; 392 165-208.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2024.02.017
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: SEMIGRUPOS NÃO LINEARES, EQUAÇÕES DE EVOLUÇÃO, ATRATORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e BORTOLAN, Matheus Cheque e PEREIRA, Fabiano. Lyapunov functions for dynamically gradient impulsive systems. Journal of Differential Equations, v. 384, p. 279-325, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2023.12.008. Acesso em: 08 out. 2025.
    • APA

      Bonotto, E. de M., Bortolan, M. C., & Pereira, F. (2024). Lyapunov functions for dynamically gradient impulsive systems. Journal of Differential Equations, 384, 279-325. doi:10.1016/j.jde.2023.12.008
    • NLM

      Bonotto E de M, Bortolan MC, Pereira F. Lyapunov functions for dynamically gradient impulsive systems [Internet]. Journal of Differential Equations. 2024 ; 384 279-325.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2023.12.008
    • Vancouver

      Bonotto E de M, Bortolan MC, Pereira F. Lyapunov functions for dynamically gradient impulsive systems [Internet]. Journal of Differential Equations. 2024 ; 384 279-325.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2023.12.008
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, PROBLEMAS DE CONTORNO, SISTEMAS DINÂMICOS

    Disponível em 2026-07-01Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LÓPEZ-LÁZARO, Heraclio et al. Pullback attractors with finite fractal dimension for a semilinear transfer equation with delay in some non-cylindrical domain. Journal of Differential Equations, v. 393, p. 58-101, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2024.02.005. Acesso em: 08 out. 2025.
    • APA

      López-Lázaro, H., Nascimento, M. J. D., Takaessu Junior, C. R., & Azevedo, V. T. (2024). Pullback attractors with finite fractal dimension for a semilinear transfer equation with delay in some non-cylindrical domain. Journal of Differential Equations, 393, 58-101. doi:10.1016/j.jde.2024.02.005
    • NLM

      López-Lázaro H, Nascimento MJD, Takaessu Junior CR, Azevedo VT. Pullback attractors with finite fractal dimension for a semilinear transfer equation with delay in some non-cylindrical domain [Internet]. Journal of Differential Equations. 2024 ; 393 58-101.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2024.02.005
    • Vancouver

      López-Lázaro H, Nascimento MJD, Takaessu Junior CR, Azevedo VT. Pullback attractors with finite fractal dimension for a semilinear transfer equation with delay in some non-cylindrical domain [Internet]. Journal of Differential Equations. 2024 ; 393 58-101.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2024.02.005
  • Source: Journal of Differential Equations. Unidade: FFCLRP

    Subjects: EQUAÇÕES DIFERENCIAIS ESTOCÁSTICAS, PROCESSOS ESTOCÁSTICOS, EQUAÇÕES DE EVOLUÇÃO, SOLUBILIDADE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CHEMETOV, Nikolai Vasilievich e CIPRIANO, Fernanda. Weak solution for stochastic Degasperis-Procesi equation. Journal of Differential Equations, v. 382, p. 1-49, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2023.11.009. Acesso em: 08 out. 2025.
    • APA

      Chemetov, N. V., & Cipriano, F. (2024). Weak solution for stochastic Degasperis-Procesi equation. Journal of Differential Equations, 382, 1-49. doi:10.1016/j.jde.2023.11.009
    • NLM

      Chemetov NV, Cipriano F. Weak solution for stochastic Degasperis-Procesi equation [Internet]. Journal of Differential Equations. 2024 ; 382 1-49.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2023.11.009
    • Vancouver

      Chemetov NV, Cipriano F. Weak solution for stochastic Degasperis-Procesi equation [Internet]. Journal of Differential Equations. 2024 ; 382 1-49.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2023.11.009
  • Source: Journal of Differential Equations. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDRADE, João Henrique e DO Ó, João Marcos. Asymptotics for singular solutions to conformally invariant fourth order systems in the punctured ball. Journal of Differential Equations, v. 413, p. 190-239, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2024.08.029. Acesso em: 08 out. 2025.
    • APA

      Andrade, J. H., & do Ó, J. M. (2024). Asymptotics for singular solutions to conformally invariant fourth order systems in the punctured ball. Journal of Differential Equations, 413, 190-239. doi:10.1016/j.jde.2024.08.029
    • NLM

      Andrade JH, do Ó JM. Asymptotics for singular solutions to conformally invariant fourth order systems in the punctured ball [Internet]. Journal of Differential Equations. 2024 ; 413 190-239.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2024.08.029
    • Vancouver

      Andrade JH, do Ó JM. Asymptotics for singular solutions to conformally invariant fourth order systems in the punctured ball [Internet]. Journal of Differential Equations. 2024 ; 413 190-239.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2024.08.029
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA QUALITATIVA, SISTEMAS DIFERENCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRAUN, Francisco e FERNANDES, Filipe. On Reeb components of nonsingular polynomial differential systems on the real plane. Journal of Differential Equations, v. 320, p. 469-478, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2022.03.002. Acesso em: 08 out. 2025.
    • APA

      Braun, F., & Fernandes, F. (2022). On Reeb components of nonsingular polynomial differential systems on the real plane. Journal of Differential Equations, 320, 469-478. doi:10.1016/j.jde.2022.03.002
    • NLM

      Braun F, Fernandes F. On Reeb components of nonsingular polynomial differential systems on the real plane [Internet]. Journal of Differential Equations. 2022 ; 320 469-478.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2022.03.002
    • Vancouver

      Braun F, Fernandes F. On Reeb components of nonsingular polynomial differential systems on the real plane [Internet]. Journal of Differential Equations. 2022 ; 320 469-478.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2022.03.002
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, INTEGRAL DE DENJOY, INTEGRAL DE PERRON, TEORIA ASSINTÓTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Fernanda Andrade da e FEDERSON, Marcia e TOON, Eduard. Stability, boundedness and controllability of solutions of measure functional differential equations. Journal of Differential Equations, v. 307, n. Ja 2022, p. 160-210, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.10.044. Acesso em: 08 out. 2025.
    • APA

      Silva, F. A. da, Federson, M., & Toon, E. (2022). Stability, boundedness and controllability of solutions of measure functional differential equations. Journal of Differential Equations, 307( Ja 2022), 160-210. doi:10.1016/j.jde.2021.10.044
    • NLM

      Silva FA da, Federson M, Toon E. Stability, boundedness and controllability of solutions of measure functional differential equations [Internet]. Journal of Differential Equations. 2022 ; 307( Ja 2022): 160-210.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2021.10.044
    • Vancouver

      Silva FA da, Federson M, Toon E. Stability, boundedness and controllability of solutions of measure functional differential equations [Internet]. Journal of Differential Equations. 2022 ; 307( Ja 2022): 160-210.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2021.10.044
  • Source: Journal of Differential Equations. Unidade: IME

    Subjects: MÉTODOS VARIACIONAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS, FÍSICA MOLECULAR

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      D'AVENIA, Pietro e MAIA, Liliane e SICILIANO, Gaetano. Hartree-Fock type systems: existence of ground states and asymptotic behavior. Journal of Differential Equations, v. 355, p. 580-614, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2022.07.012. Acesso em: 08 out. 2025.
    • APA

      d'Avenia, P., Maia, L., & Siciliano, G. (2022). Hartree-Fock type systems: existence of ground states and asymptotic behavior. Journal of Differential Equations, 355, 580-614. doi:10.1016/j.jde.2022.07.012
    • NLM

      d'Avenia P, Maia L, Siciliano G. Hartree-Fock type systems: existence of ground states and asymptotic behavior [Internet]. Journal of Differential Equations. 2022 ; 355 580-614.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2022.07.012
    • Vancouver

      d'Avenia P, Maia L, Siciliano G. Hartree-Fock type systems: existence of ground states and asymptotic behavior [Internet]. Journal of Differential Equations. 2022 ; 355 580-614.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2022.07.012
  • Source: Journal of Differential Equations. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NAKASATO, Jean Carlos e PEREIRA, Marcone Corrêa. An optimal control problem in a tubular thin domain with rough boundary. Journal of Differential Equations, v. 313, p. 188-243, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.12.021. Acesso em: 08 out. 2025.
    • APA

      Nakasato, J. C., & Pereira, M. C. (2022). An optimal control problem in a tubular thin domain with rough boundary. Journal of Differential Equations, 313, 188-243. doi:10.1016/j.jde.2021.12.021
    • NLM

      Nakasato JC, Pereira MC. An optimal control problem in a tubular thin domain with rough boundary [Internet]. Journal of Differential Equations. 2022 ; 313 188-243.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2021.12.021
    • Vancouver

      Nakasato JC, Pereira MC. An optimal control problem in a tubular thin domain with rough boundary [Internet]. Journal of Differential Equations. 2022 ; 313 188-243.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2021.12.021
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, TEORIA DA BIFURCAÇÃO, SISTEMAS DINÂMICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ITIKAWA, Jackson e OLIVEIRA, Regilene Delazari dos Santos e TORREGROSA, Joan. First-order perturbation for multi-parameter center families. Journal of Differential Equations, v. 309, p. 291-310, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.11.035. Acesso em: 08 out. 2025.
    • APA

      Itikawa, J., Oliveira, R. D. dos S., & Torregrosa, J. (2022). First-order perturbation for multi-parameter center families. Journal of Differential Equations, 309, 291-310. doi:10.1016/j.jde.2021.11.035
    • NLM

      Itikawa J, Oliveira RD dos S, Torregrosa J. First-order perturbation for multi-parameter center families [Internet]. Journal of Differential Equations. 2022 ; 309 291-310.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2021.11.035
    • Vancouver

      Itikawa J, Oliveira RD dos S, Torregrosa J. First-order perturbation for multi-parameter center families [Internet]. Journal of Differential Equations. 2022 ; 309 291-310.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2021.11.035
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, OPERADORES DIFERENCIAIS, EQUAÇÕES DIFERENCIAIS COM RETARDAMENTO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      YANCHUK, Serhiy et al. Absolute stability and absolute hyperbolicity in systems with discrete time-delays. Journal of Differential Equations, v. 318, p. 323-343, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2022.02.026. Acesso em: 08 out. 2025.
    • APA

      Yanchuk, S., Wolfrum, M., Pereira, T., & Turaev, D. (2022). Absolute stability and absolute hyperbolicity in systems with discrete time-delays. Journal of Differential Equations, 318, 323-343. doi:10.1016/j.jde.2022.02.026
    • NLM

      Yanchuk S, Wolfrum M, Pereira T, Turaev D. Absolute stability and absolute hyperbolicity in systems with discrete time-delays [Internet]. Journal of Differential Equations. 2022 ; 318 323-343.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2022.02.026
    • Vancouver

      Yanchuk S, Wolfrum M, Pereira T, Turaev D. Absolute stability and absolute hyperbolicity in systems with discrete time-delays [Internet]. Journal of Differential Equations. 2022 ; 318 323-343.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2022.02.026
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: SOLUÇÕES PERIÓDICAS, EQUAÇÕES INTEGRAIS, INTEGRAL DE DENJOY

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AFONSO, S M e BONOTTO, Everaldo de Mello e SILVA, Márcia Richtielle da. Periodic solutions of measure functional differential equations. Journal of Differential Equations, v. 309, p. 196-230, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.11.031. Acesso em: 08 out. 2025.
    • APA

      Afonso, S. M., Bonotto, E. de M., & Silva, M. R. da. (2022). Periodic solutions of measure functional differential equations. Journal of Differential Equations, 309, 196-230. doi:10.1016/j.jde.2021.11.031
    • NLM

      Afonso SM, Bonotto E de M, Silva MR da. Periodic solutions of measure functional differential equations [Internet]. Journal of Differential Equations. 2022 ; 309 196-230.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2021.11.031
    • Vancouver

      Afonso SM, Bonotto E de M, Silva MR da. Periodic solutions of measure functional differential equations [Internet]. Journal of Differential Equations. 2022 ; 309 196-230.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2021.11.031
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: SIMETRIA, INVARIANTES, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Wendel Leite da e MOREIRA DOS SANTOS, Ederson. Asymptotic profile and Morse index of the radial solutions of the Hénon equation. Journal of Differential Equations, v. 287, p. 212-235, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.03.050. Acesso em: 08 out. 2025.
    • APA

      Silva, W. L. da, & Moreira dos Santos, E. (2021). Asymptotic profile and Morse index of the radial solutions of the Hénon equation. Journal of Differential Equations, 287, 212-235. doi:10.1016/j.jde.2021.03.050
    • NLM

      Silva WL da, Moreira dos Santos E. Asymptotic profile and Morse index of the radial solutions of the Hénon equation [Internet]. Journal of Differential Equations. 2021 ; 287 212-235.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2021.03.050
    • Vancouver

      Silva WL da, Moreira dos Santos E. Asymptotic profile and Morse index of the radial solutions of the Hénon equation [Internet]. Journal of Differential Equations. 2021 ; 287 212-235.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2021.03.050

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025