Filtros : "Financiamento FAPESP" "Journal of Chemical Information and Modeling" "INTELIGÊNCIA ARTIFICIAL" Limpar

Filtros



Refine with date range


  • Source: Journal of Chemical Information and Modeling. Unidade: IFSC

    Subjects: INTELIGÊNCIA ARTIFICIAL, MODELAGEM MOLECULAR, MOLÉCULA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NOGUEIRA, Victor Henrique Rabesquine et al. Fuzz testing molecular representation using deep variational anomaly generation. Journal of Chemical Information and Modeling, v. 65, n. 4, p. 1911-1927 + supporting information, 2025Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.4c01876. Acesso em: 08 out. 2025.
    • APA

      Nogueira, V. H. R., Sharma, R., Guido, R. V. C., & Keiser, M. J. (2025). Fuzz testing molecular representation using deep variational anomaly generation. Journal of Chemical Information and Modeling, 65( 4), 1911-1927 + supporting information. doi:10.1021/acs.jcim.4c01876
    • NLM

      Nogueira VHR, Sharma R, Guido RVC, Keiser MJ. Fuzz testing molecular representation using deep variational anomaly generation [Internet]. Journal of Chemical Information and Modeling. 2025 ; 65( 4): 1911-1927 + supporting information.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.4c01876
    • Vancouver

      Nogueira VHR, Sharma R, Guido RVC, Keiser MJ. Fuzz testing molecular representation using deep variational anomaly generation [Internet]. Journal of Chemical Information and Modeling. 2025 ; 65( 4): 1911-1927 + supporting information.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.4c01876
  • Source: Journal of Chemical Information and Modeling. Unidade: IFSC

    Subjects: PLANEJAMENTO DE FÁRMACOS, COMPUTAÇÃO APLICADA, INTELIGÊNCIA ARTIFICIAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BATRA, Kushal et al. Quantum machine learning algorithms for drug discovery applications. Journal of Chemical Information and Modeling, v. 61, n. 6, p. 2641-2647, 2021Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.1c00166. Acesso em: 08 out. 2025.
    • APA

      Batra, K., Zorn, K. M., Foil, D. H., Minerali, E., Gawriljuk, V. O., Lane, T. R., & Ekins, S. (2021). Quantum machine learning algorithms for drug discovery applications. Journal of Chemical Information and Modeling, 61( 6), 2641-2647. doi:10.1021/acs.jcim.1c00166
    • NLM

      Batra K, Zorn KM, Foil DH, Minerali E, Gawriljuk VO, Lane TR, Ekins S. Quantum machine learning algorithms for drug discovery applications [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61( 6): 2641-2647.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.1c00166
    • Vancouver

      Batra K, Zorn KM, Foil DH, Minerali E, Gawriljuk VO, Lane TR, Ekins S. Quantum machine learning algorithms for drug discovery applications [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61( 6): 2641-2647.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.1c00166

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025