Filtros : "Financiamento FAPESP" "2021" "IME-MAT" Limpar

Filtros



Refine with date range


  • Source: Bulletin of the London Mathematical Society. Unidade: IME

    Subjects: ÁLGEBRA HOMOLÓGICA, COHOMOLOGIA

    Versão AceitaAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CIBILS, Claude et al. Jacobi-Zariski long nearly exact sequences for associative algebras. Bulletin of the London Mathematical Society, v. 53, n. 6, p. 1636-1650, 2021Tradução . . Disponível em: https://doi.org/10.1112/blms.12516. Acesso em: 08 out. 2025.
    • APA

      Cibils, C., Lanzilotta, M., Marcos, E. do N., & Solotar, A. (2021). Jacobi-Zariski long nearly exact sequences for associative algebras. Bulletin of the London Mathematical Society, 53( 6), 1636-1650. doi:10.1112/blms.12516
    • NLM

      Cibils C, Lanzilotta M, Marcos E do N, Solotar A. Jacobi-Zariski long nearly exact sequences for associative algebras [Internet]. Bulletin of the London Mathematical Society. 2021 ; 53( 6): 1636-1650.[citado 2025 out. 08 ] Available from: https://doi.org/10.1112/blms.12516
    • Vancouver

      Cibils C, Lanzilotta M, Marcos E do N, Solotar A. Jacobi-Zariski long nearly exact sequences for associative algebras [Internet]. Bulletin of the London Mathematical Society. 2021 ; 53( 6): 1636-1650.[citado 2025 out. 08 ] Available from: https://doi.org/10.1112/blms.12516
  • Source: São Paulo Journal of Mathematical Sciences. Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, GRUPOS DE LIE

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNANDES, Rui Loja e STRUCHINER, Ivan. The classifying Lie algebroid of a geometric structure II: G-structures with connection. São Paulo Journal of Mathematical Sciences, v. 15, n. 2, p. 524-570, 2021Tradução . . Disponível em: https://doi.org/10.1007/s40863-021-00272-x. Acesso em: 08 out. 2025.
    • APA

      Fernandes, R. L., & Struchiner, I. (2021). The classifying Lie algebroid of a geometric structure II: G-structures with connection. São Paulo Journal of Mathematical Sciences, 15( 2), 524-570. doi:10.1007/s40863-021-00272-x
    • NLM

      Fernandes RL, Struchiner I. The classifying Lie algebroid of a geometric structure II: G-structures with connection [Internet]. São Paulo Journal of Mathematical Sciences. 2021 ; 15( 2): 524-570.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s40863-021-00272-x
    • Vancouver

      Fernandes RL, Struchiner I. The classifying Lie algebroid of a geometric structure II: G-structures with connection [Internet]. São Paulo Journal of Mathematical Sciences. 2021 ; 15( 2): 524-570.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s40863-021-00272-x
  • Source: São Paulo Journal of Mathematical Sciences. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, INVARIANTES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CORTES, Wagner e MARCOS, Eduardo do Nascimento. Description of partial actions. São Paulo Journal of Mathematical Sciences, v. 15, n. 2, p. 929-939, 2021Tradução . . Disponível em: https://doi.org/10.1007/s40863-021-00265-w. Acesso em: 08 out. 2025.
    • APA

      Cortes, W., & Marcos, E. do N. (2021). Description of partial actions. São Paulo Journal of Mathematical Sciences, 15( 2), 929-939. doi:10.1007/s40863-021-00265-w
    • NLM

      Cortes W, Marcos E do N. Description of partial actions [Internet]. São Paulo Journal of Mathematical Sciences. 2021 ; 15( 2): 929-939.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s40863-021-00265-w
    • Vancouver

      Cortes W, Marcos E do N. Description of partial actions [Internet]. São Paulo Journal of Mathematical Sciences. 2021 ; 15( 2): 929-939.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s40863-021-00265-w
  • Source: Asian Journal of Mathematics. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BAVULA, Volodymyr e BEKKERT, Viktor e FUTORNY, Vyacheslav. Explicit description of generalized weight modules of the algebra of polynomial integro-differential operators In. Asian Journal of Mathematics, v. 25, n. 5, p. 727-756, 2021Tradução . . Disponível em: https://doi.org/10.4310/AJM.2021.v25.n5.a6. Acesso em: 08 out. 2025.
    • APA

      Bavula, V., Bekkert, V., & Futorny, V. (2021). Explicit description of generalized weight modules of the algebra of polynomial integro-differential operators In. Asian Journal of Mathematics, 25( 5), 727-756. doi:10.4310/AJM.2021.v25.n5.a6
    • NLM

      Bavula V, Bekkert V, Futorny V. Explicit description of generalized weight modules of the algebra of polynomial integro-differential operators In [Internet]. Asian Journal of Mathematics. 2021 ; 25( 5): 727-756.[citado 2025 out. 08 ] Available from: https://doi.org/10.4310/AJM.2021.v25.n5.a6
    • Vancouver

      Bavula V, Bekkert V, Futorny V. Explicit description of generalized weight modules of the algebra of polynomial integro-differential operators In [Internet]. Asian Journal of Mathematics. 2021 ; 25( 5): 727-756.[citado 2025 out. 08 ] Available from: https://doi.org/10.4310/AJM.2021.v25.n5.a6
  • Source: Mathematical Proceedings of the Cambridge Philosophical Society. Unidade: IME

    Subjects: TEORIA DOS GRUPOS, LAÇOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre e ZAVARNITSINE, Andrei V. Moufang loops with nonnormal commutative centre. Mathematical Proceedings of the Cambridge Philosophical Society, v. 170, n. 3, p. 609-614, 2021Tradução . . Disponível em: https://doi.org/10.1017/S0305004119000549. Acesso em: 08 out. 2025.
    • APA

      Grichkov, A., & Zavarnitsine, A. V. (2021). Moufang loops with nonnormal commutative centre. Mathematical Proceedings of the Cambridge Philosophical Society, 170( 3), 609-614. doi:10.1017/S0305004119000549
    • NLM

      Grichkov A, Zavarnitsine AV. Moufang loops with nonnormal commutative centre [Internet]. Mathematical Proceedings of the Cambridge Philosophical Society. 2021 ; 170( 3): 609-614.[citado 2025 out. 08 ] Available from: https://doi.org/10.1017/S0305004119000549
    • Vancouver

      Grichkov A, Zavarnitsine AV. Moufang loops with nonnormal commutative centre [Internet]. Mathematical Proceedings of the Cambridge Philosophical Society. 2021 ; 170( 3): 609-614.[citado 2025 out. 08 ] Available from: https://doi.org/10.1017/S0305004119000549
  • Source: Nonlinear Analysis. Unidade: IME

    Subjects: GEOMETRIA DIFERENCIAL, FUNÇÕES DE UMA VARIÁVEL COMPLEXA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DUSSAN, Martha P e FRANCO FILHO, Antonio de Padua e SIMÕES, P. Spacelike Surfaces in L4 with null mean curvature vector and the nonlinear Riccati partial differential equation. Nonlinear Analysis, v. 207, n. art. 112271, p. 1-19, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.na.2021.112271. Acesso em: 08 out. 2025.
    • APA

      Dussan, M. P., Franco Filho, A. de P., & Simões, P. (2021). Spacelike Surfaces in L4 with null mean curvature vector and the nonlinear Riccati partial differential equation. Nonlinear Analysis, 207( art. 112271), 1-19. doi:10.1016/j.na.2021.112271
    • NLM

      Dussan MP, Franco Filho A de P, Simões P. Spacelike Surfaces in L4 with null mean curvature vector and the nonlinear Riccati partial differential equation [Internet]. Nonlinear Analysis. 2021 ; 207( art. 112271): 1-19.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.na.2021.112271
    • Vancouver

      Dussan MP, Franco Filho A de P, Simões P. Spacelike Surfaces in L4 with null mean curvature vector and the nonlinear Riccati partial differential equation [Internet]. Nonlinear Analysis. 2021 ; 207( art. 112271): 1-19.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.na.2021.112271
  • Source: International Journal of Algebra and Computation. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, OPERADORES DIFERENCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e SCHWARZ, João Fernando. Holonomic modules for rings of invariant differential operators. International Journal of Algebra and Computation, v. 31, n. 04, p. 605-622, 2021Tradução . . Disponível em: https://doi.org/10.1142/S0218196721500296. Acesso em: 08 out. 2025.
    • APA

      Futorny, V., & Schwarz, J. F. (2021). Holonomic modules for rings of invariant differential operators. International Journal of Algebra and Computation, 31( 04), 605-622. doi:10.1142/S0218196721500296
    • NLM

      Futorny V, Schwarz JF. Holonomic modules for rings of invariant differential operators [Internet]. International Journal of Algebra and Computation. 2021 ; 31( 04): 605-622.[citado 2025 out. 08 ] Available from: https://doi.org/10.1142/S0218196721500296
    • Vancouver

      Futorny V, Schwarz JF. Holonomic modules for rings of invariant differential operators [Internet]. International Journal of Algebra and Computation. 2021 ; 31( 04): 605-622.[citado 2025 out. 08 ] Available from: https://doi.org/10.1142/S0218196721500296
  • Source: Nonlinearity. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FARIA, Edson de e GUARINO, Pablo. There are no σ-finite absolutely continuous invariant measures for multicritical circle maps*. Nonlinearity, v. 34, n. 10, p. 6727-6749, 2021Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ac1a02. Acesso em: 08 out. 2025.
    • APA

      Faria, E. de, & Guarino, P. (2021). There are no σ-finite absolutely continuous invariant measures for multicritical circle maps*. Nonlinearity, 34( 10), 6727-6749. doi:10.1088/1361-6544/ac1a02
    • NLM

      Faria E de, Guarino P. There are no σ-finite absolutely continuous invariant measures for multicritical circle maps* [Internet]. Nonlinearity. 2021 ; 34( 10): 6727-6749.[citado 2025 out. 08 ] Available from: https://doi.org/10.1088/1361-6544/ac1a02
    • Vancouver

      Faria E de, Guarino P. There are no σ-finite absolutely continuous invariant measures for multicritical circle maps* [Internet]. Nonlinearity. 2021 ; 34( 10): 6727-6749.[citado 2025 out. 08 ] Available from: https://doi.org/10.1088/1361-6544/ac1a02
  • Source: Zeitschrift für angewandte Mathematik und Mechanik. Unidade: IME

    Assunto: FLUXO TURBULENTO DOS FLUÍDOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GREBENEV, Vladimir et al. Local equilibrium approximation in free turbulent flows: verification through the method of differential constrains. Zeitschrift für angewandte Mathematik und Mechanik, v. 101, n. 9, 2021Tradução . . Disponível em: https://doi.org/10.1002/zamm.202000095. Acesso em: 08 out. 2025.
    • APA

      Grebenev, V., Demenkov, A. G., Chernykh, G. G., & Grichkov, A. (2021). Local equilibrium approximation in free turbulent flows: verification through the method of differential constrains. Zeitschrift für angewandte Mathematik und Mechanik, 101( 9). doi:10.1002/zamm.202000095
    • NLM

      Grebenev V, Demenkov AG, Chernykh GG, Grichkov A. Local equilibrium approximation in free turbulent flows: verification through the method of differential constrains [Internet]. Zeitschrift für angewandte Mathematik und Mechanik. 2021 ; 101( 9):[citado 2025 out. 08 ] Available from: https://doi.org/10.1002/zamm.202000095
    • Vancouver

      Grebenev V, Demenkov AG, Chernykh GG, Grichkov A. Local equilibrium approximation in free turbulent flows: verification through the method of differential constrains [Internet]. Zeitschrift für angewandte Mathematik und Mechanik. 2021 ; 101( 9):[citado 2025 out. 08 ] Available from: https://doi.org/10.1002/zamm.202000095
  • Source: Journal of Mathematical Analysis and Applications. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIU, Zhisu e SICILIANO, Gaetano. A perturbation approach for the Schrödinger-Born-Infeld system: solutions in the subcritical and critical case. Journal of Mathematical Analysis and Applications, v. 503, n. 2, p. 1-22, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2021.125326. Acesso em: 08 out. 2025.
    • APA

      Liu, Z., & Siciliano, G. (2021). A perturbation approach for the Schrödinger-Born-Infeld system: solutions in the subcritical and critical case. Journal of Mathematical Analysis and Applications, 503( 2), 1-22. doi:10.1016/j.jmaa.2021.125326
    • NLM

      Liu Z, Siciliano G. A perturbation approach for the Schrödinger-Born-Infeld system: solutions in the subcritical and critical case [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 503( 2): 1-22.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125326
    • Vancouver

      Liu Z, Siciliano G. A perturbation approach for the Schrödinger-Born-Infeld system: solutions in the subcritical and critical case [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 503( 2): 1-22.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125326
  • Source: Proceedings of the American Mathematical Society. Unidade: IME

    Subjects: GEOMETRIA DIFERENCIAL, SUBVARIEDADES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOI, Andrea e MOSSA, Roberto. Kähler immersions of Kähler-Ricci solitons into definite or indefinite complex space forms. Proceedings of the American Mathematical Society, v. 149, p. 4931-4941, 2021Tradução . . Disponível em: https://doi.org/10.1090/proc/15628. Acesso em: 08 out. 2025.
    • APA

      Loi, A., & Mossa, R. (2021). Kähler immersions of Kähler-Ricci solitons into definite or indefinite complex space forms. Proceedings of the American Mathematical Society, 149, 4931-4941. doi:10.1090/proc/15628
    • NLM

      Loi A, Mossa R. Kähler immersions of Kähler-Ricci solitons into definite or indefinite complex space forms [Internet]. Proceedings of the American Mathematical Society. 2021 ; 149 4931-4941.[citado 2025 out. 08 ] Available from: https://doi.org/10.1090/proc/15628
    • Vancouver

      Loi A, Mossa R. Kähler immersions of Kähler-Ricci solitons into definite or indefinite complex space forms [Internet]. Proceedings of the American Mathematical Society. 2021 ; 149 4931-4941.[citado 2025 out. 08 ] Available from: https://doi.org/10.1090/proc/15628
  • Source: Israel Journal of Mathematics. Unidade: IME

    Assunto: ÁLGEBRAS DE JORDAN

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SHESTAKOV, Ivan P e ZAICEV, Mikhail. Codimension growth of simple Jordan superalgebras. Israel Journal of Mathematics, v. 245, p. 615–638, 2021Tradução . . Disponível em: https://doi.org/10.1007/s11856-021-2221-2. Acesso em: 08 out. 2025.
    • APA

      Shestakov, I. P., & Zaicev, M. (2021). Codimension growth of simple Jordan superalgebras. Israel Journal of Mathematics, 245, 615–638. doi:10.1007/s11856-021-2221-2
    • NLM

      Shestakov IP, Zaicev M. Codimension growth of simple Jordan superalgebras [Internet]. Israel Journal of Mathematics. 2021 ; 245 615–638.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s11856-021-2221-2
    • Vancouver

      Shestakov IP, Zaicev M. Codimension growth of simple Jordan superalgebras [Internet]. Israel Journal of Mathematics. 2021 ; 245 615–638.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s11856-021-2221-2
  • Source: Communications in Algebra. Unidades: IME, EACH

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEHN, Antonio et al. About nilalgebras satisfying (xy)2 = x2y2. Communications in Algebra, v. 49, n. 9, p. 3708-3719, 2021Tradução . . Disponível em: https://doi.org/10.1080/00927872.2021.1903024. Acesso em: 08 out. 2025.
    • APA

      Behn, A., Correa, I., Fernández, J. C. G., & Garcia, C. I. (2021). About nilalgebras satisfying (xy)2 = x2y2. Communications in Algebra, 49( 9), 3708-3719. doi:10.1080/00927872.2021.1903024
    • NLM

      Behn A, Correa I, Fernández JCG, Garcia CI. About nilalgebras satisfying (xy)2 = x2y2 [Internet]. Communications in Algebra. 2021 ; 49( 9): 3708-3719.[citado 2025 out. 08 ] Available from: https://doi.org/10.1080/00927872.2021.1903024
    • Vancouver

      Behn A, Correa I, Fernández JCG, Garcia CI. About nilalgebras satisfying (xy)2 = x2y2 [Internet]. Communications in Algebra. 2021 ; 49( 9): 3708-3719.[citado 2025 out. 08 ] Available from: https://doi.org/10.1080/00927872.2021.1903024
  • Source: Communications in Algebra. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS FILHO, G e MURAKAMI, Lúcia Satie Ikemoto e SHESTAKOV, Ivan P. Locally finite coalgebras and the locally nilpotent radical II. Communications in Algebra, v. 49, n. 12, p. 5472-5482, 2021Tradução . . Disponível em: https://doi.org/10.1080/00927872.2021.1947310. Acesso em: 08 out. 2025.
    • APA

      Santos Filho, G., Murakami, L. S. I., & Shestakov, I. P. (2021). Locally finite coalgebras and the locally nilpotent radical II. Communications in Algebra, 49( 12), 5472-5482. doi:10.1080/00927872.2021.1947310
    • NLM

      Santos Filho G, Murakami LSI, Shestakov IP. Locally finite coalgebras and the locally nilpotent radical II [Internet]. Communications in Algebra. 2021 ; 49( 12): 5472-5482.[citado 2025 out. 08 ] Available from: https://doi.org/10.1080/00927872.2021.1947310
    • Vancouver

      Santos Filho G, Murakami LSI, Shestakov IP. Locally finite coalgebras and the locally nilpotent radical II [Internet]. Communications in Algebra. 2021 ; 49( 12): 5472-5482.[citado 2025 out. 08 ] Available from: https://doi.org/10.1080/00927872.2021.1947310
  • Source: Zeitschrift für angewandte Mathematik und Physik. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, GEOMETRIA DIFERENCIAL, GRUPOS DE LIE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GREBENEV, Vladimir et al. Second-order invariants of the inviscid Lundgren-Monin-Novikov equations for 2d vorticity fields. Zeitschrift für angewandte Mathematik und Physik, v. 72, n. 3, p. 1-14, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00033-021-01562-2. Acesso em: 08 out. 2025.
    • APA

      Grebenev, V., Grichkov, A., Oberlack, M., & Waclawczyk, M. (2021). Second-order invariants of the inviscid Lundgren-Monin-Novikov equations for 2d vorticity fields. Zeitschrift für angewandte Mathematik und Physik, 72( 3), 1-14. doi:10.1007/s00033-021-01562-2
    • NLM

      Grebenev V, Grichkov A, Oberlack M, Waclawczyk M. Second-order invariants of the inviscid Lundgren-Monin-Novikov equations for 2d vorticity fields [Internet]. Zeitschrift für angewandte Mathematik und Physik. 2021 ; 72( 3): 1-14.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00033-021-01562-2
    • Vancouver

      Grebenev V, Grichkov A, Oberlack M, Waclawczyk M. Second-order invariants of the inviscid Lundgren-Monin-Novikov equations for 2d vorticity fields [Internet]. Zeitschrift für angewandte Mathematik und Physik. 2021 ; 72( 3): 1-14.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00033-021-01562-2
  • Source: Journal of Algebra and Its Applications. Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, SUPERÁLGEBRAS DE LIE, EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SHESTAKOV, Ivan P e SOKOLOV, Vladimir V. Multi-component generalizations of mKdV equation and nonassociative algebraic structures. Journal of Algebra and Its Applications, v. 20, n. art. 2150050, p. 1-24, 2021Tradução . . Disponível em: https://doi.org/10.1142/S021949882150050X. Acesso em: 08 out. 2025.
    • APA

      Shestakov, I. P., & Sokolov, V. V. (2021). Multi-component generalizations of mKdV equation and nonassociative algebraic structures. Journal of Algebra and Its Applications, 20( art. 2150050), 1-24. doi:10.1142/S021949882150050X
    • NLM

      Shestakov IP, Sokolov VV. Multi-component generalizations of mKdV equation and nonassociative algebraic structures [Internet]. Journal of Algebra and Its Applications. 2021 ; 20( art. 2150050): 1-24.[citado 2025 out. 08 ] Available from: https://doi.org/10.1142/S021949882150050X
    • Vancouver

      Shestakov IP, Sokolov VV. Multi-component generalizations of mKdV equation and nonassociative algebraic structures [Internet]. Journal of Algebra and Its Applications. 2021 ; 20( art. 2150050): 1-24.[citado 2025 out. 08 ] Available from: https://doi.org/10.1142/S021949882150050X
  • Source: Bulletin of Mathematical Sciences. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, TEORIA DA REPRESENTAÇÃO

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e GRANTCHAROV, Dimitar e RAMIREZ, Luis Enrique. Classification of simple Gelfand–Tsetlin modules of 𝔰𝔩(3). Bulletin of Mathematical Sciences, v. 11, n. artigo 2130001, p. 1-109, 2021Tradução . . Disponível em: https://doi.org/10.1142/S1664360721300012. Acesso em: 08 out. 2025.
    • APA

      Futorny, V., Grantcharov, D., & Ramirez, L. E. (2021). Classification of simple Gelfand–Tsetlin modules of 𝔰𝔩(3). Bulletin of Mathematical Sciences, 11( artigo 2130001), 1-109. doi:10.1142/S1664360721300012
    • NLM

      Futorny V, Grantcharov D, Ramirez LE. Classification of simple Gelfand–Tsetlin modules of 𝔰𝔩(3) [Internet]. Bulletin of Mathematical Sciences. 2021 ; 11( artigo 2130001): 1-109.[citado 2025 out. 08 ] Available from: https://doi.org/10.1142/S1664360721300012
    • Vancouver

      Futorny V, Grantcharov D, Ramirez LE. Classification of simple Gelfand–Tsetlin modules of 𝔰𝔩(3) [Internet]. Bulletin of Mathematical Sciences. 2021 ; 11( artigo 2130001): 1-109.[citado 2025 out. 08 ] Available from: https://doi.org/10.1142/S1664360721300012
  • Source: Bulletin of the Brazilian Mathematical Society, New Series. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, TEORIA DA REPRESENTAÇÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      IUSENKO, Kostiantyn e MACQUARRIE, John William e QUIRINO, Samuel. A functorial approach to Gabriel k-quiver constructions for coalgebras and pseudocompact algebras. Bulletin of the Brazilian Mathematical Society, New Series, v. 52, p. 697-719, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00574-020-00227-4. Acesso em: 08 out. 2025.
    • APA

      Iusenko, K., MacQuarrie, J. W., & Quirino, S. (2021). A functorial approach to Gabriel k-quiver constructions for coalgebras and pseudocompact algebras. Bulletin of the Brazilian Mathematical Society, New Series, 52, 697-719. doi:10.1007/s00574-020-00227-4
    • NLM

      Iusenko K, MacQuarrie JW, Quirino S. A functorial approach to Gabriel k-quiver constructions for coalgebras and pseudocompact algebras [Internet]. Bulletin of the Brazilian Mathematical Society, New Series. 2021 ; 52 697-719.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00574-020-00227-4
    • Vancouver

      Iusenko K, MacQuarrie JW, Quirino S. A functorial approach to Gabriel k-quiver constructions for coalgebras and pseudocompact algebras [Internet]. Bulletin of the Brazilian Mathematical Society, New Series. 2021 ; 52 697-719.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00574-020-00227-4
  • Source: Colloquium Mathematicum. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, Bruno Leonardo Macedo e GUZZO JÚNIOR, Henrique e KAYGORODOV, Ivan. Lie maps on alternative rings preserving idempotents. Colloquium Mathematicum, v. 166, n. 2, p. 227-238, 2021Tradução . . Disponível em: https://doi.org/10.4064/cm8195-10-2020. Acesso em: 08 out. 2025.
    • APA

      Ferreira, B. L. M., Guzzo Júnior, H., & Kaygorodov, I. (2021). Lie maps on alternative rings preserving idempotents. Colloquium Mathematicum, 166( 2), 227-238. doi:10.4064/cm8195-10-2020
    • NLM

      Ferreira BLM, Guzzo Júnior H, Kaygorodov I. Lie maps on alternative rings preserving idempotents [Internet]. Colloquium Mathematicum. 2021 ; 166( 2): 227-238.[citado 2025 out. 08 ] Available from: https://doi.org/10.4064/cm8195-10-2020
    • Vancouver

      Ferreira BLM, Guzzo Júnior H, Kaygorodov I. Lie maps on alternative rings preserving idempotents [Internet]. Colloquium Mathematicum. 2021 ; 166( 2): 227-238.[citado 2025 out. 08 ] Available from: https://doi.org/10.4064/cm8195-10-2020

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025