Filtros : "Financiamento FAPESP" "Indexado no zbMATH Open" "MANFIO, FERNANDO" Limpar

Filtros



Refine with date range


  • Source: Journal of Geometry and Physics. Unidade: ICMC

    Subjects: GEOMETRIA DIFERENCIAL, SUBVARIEDADES, IMERSÃO (TOPOLOGIA)

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MANFIO, Fernando et al. Hypersurfaces of S³ × R and H³ × R with constant principal curvatures. Journal of Geometry and Physics, v. 213, p. 1-9, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2025.105495. Acesso em: 08 out. 2025.
    • APA

      Manfio, F., Santos, J. B. M. dos, Santos, J. P. dos, & Veken, J. V. der. (2025). Hypersurfaces of S³ × R and H³ × R with constant principal curvatures. Journal of Geometry and Physics, 213, 1-9. doi:10.1016/j.geomphys.2025.105495
    • NLM

      Manfio F, Santos JBM dos, Santos JP dos, Veken JV der. Hypersurfaces of S³ × R and H³ × R with constant principal curvatures [Internet]. Journal of Geometry and Physics. 2025 ; 213 1-9.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.geomphys.2025.105495
    • Vancouver

      Manfio F, Santos JBM dos, Santos JP dos, Veken JV der. Hypersurfaces of S³ × R and H³ × R with constant principal curvatures [Internet]. Journal of Geometry and Physics. 2025 ; 213 1-9.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.geomphys.2025.105495
  • Source: Journal of Geometry. Unidade: ICMC

    Subjects: GEOMETRIA DIFERENCIAL, SUBVARIEDADES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GARCIA, Estela e MANFIO, Fernando. Einstein submanifolds with parallel mean curvature vector field into 'S POT.N' × R. Journal of Geometry, v. 116, n. 2, p. 1-16, 2025Tradução . . Disponível em: https://doi.org/10.1007/s00022-025-00751-y. Acesso em: 08 out. 2025.
    • APA

      Garcia, E., & Manfio, F. (2025). Einstein submanifolds with parallel mean curvature vector field into 'S POT.N' × R. Journal of Geometry, 116( 2), 1-16. doi:10.1007/s00022-025-00751-y
    • NLM

      Garcia E, Manfio F. Einstein submanifolds with parallel mean curvature vector field into 'S POT.N' × R [Internet]. Journal of Geometry. 2025 ; 116( 2): 1-16.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00022-025-00751-y
    • Vancouver

      Garcia E, Manfio F. Einstein submanifolds with parallel mean curvature vector field into 'S POT.N' × R [Internet]. Journal of Geometry. 2025 ; 116( 2): 1-16.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00022-025-00751-y
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Assunto: GEOMETRIA DIFERENCIAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, Adriano Cavalcante e MANFIO, Fernando. Umbilicity of constant mean curvature hypersurfaces into space forms. Journal of Mathematical Analysis and Applications, v. 537, p. 1-13, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2024.128316. Acesso em: 08 out. 2025.
    • APA

      Bezerra, A. C., & Manfio, F. (2024). Umbilicity of constant mean curvature hypersurfaces into space forms. Journal of Mathematical Analysis and Applications, 537, 1-13. doi:10.1016/j.jmaa.2024.128316
    • NLM

      Bezerra AC, Manfio F. Umbilicity of constant mean curvature hypersurfaces into space forms [Internet]. Journal of Mathematical Analysis and Applications. 2024 ; 537 1-13.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jmaa.2024.128316
    • Vancouver

      Bezerra AC, Manfio F. Umbilicity of constant mean curvature hypersurfaces into space forms [Internet]. Journal of Mathematical Analysis and Applications. 2024 ; 537 1-13.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jmaa.2024.128316

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025