Filtros : "Financiamento FAPESP" "MANFIO, FERNANDO" Limpar

Filtros



Refine with date range


  • Source: Journal of Geometry and Physics. Unidade: ICMC

    Subjects: GEOMETRIA DIFERENCIAL, SUBVARIEDADES, IMERSÃO (TOPOLOGIA)

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MANFIO, Fernando et al. Hypersurfaces of S³ × R and H³ × R with constant principal curvatures. Journal of Geometry and Physics, v. 213, p. 1-9, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2025.105495. Acesso em: 08 out. 2025.
    • APA

      Manfio, F., Santos, J. B. M. dos, Santos, J. P. dos, & Veken, J. V. der. (2025). Hypersurfaces of S³ × R and H³ × R with constant principal curvatures. Journal of Geometry and Physics, 213, 1-9. doi:10.1016/j.geomphys.2025.105495
    • NLM

      Manfio F, Santos JBM dos, Santos JP dos, Veken JV der. Hypersurfaces of S³ × R and H³ × R with constant principal curvatures [Internet]. Journal of Geometry and Physics. 2025 ; 213 1-9.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.geomphys.2025.105495
    • Vancouver

      Manfio F, Santos JBM dos, Santos JP dos, Veken JV der. Hypersurfaces of S³ × R and H³ × R with constant principal curvatures [Internet]. Journal of Geometry and Physics. 2025 ; 213 1-9.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.geomphys.2025.105495
  • Source: Journal of Geometry. Unidade: ICMC

    Subjects: GEOMETRIA DIFERENCIAL, SUBVARIEDADES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GARCIA, Estela e MANFIO, Fernando. Einstein submanifolds with parallel mean curvature vector field into 'S POT.N' × R. Journal of Geometry, v. 116, n. 2, p. 1-16, 2025Tradução . . Disponível em: https://doi.org/10.1007/s00022-025-00751-y. Acesso em: 08 out. 2025.
    • APA

      Garcia, E., & Manfio, F. (2025). Einstein submanifolds with parallel mean curvature vector field into 'S POT.N' × R. Journal of Geometry, 116( 2), 1-16. doi:10.1007/s00022-025-00751-y
    • NLM

      Garcia E, Manfio F. Einstein submanifolds with parallel mean curvature vector field into 'S POT.N' × R [Internet]. Journal of Geometry. 2025 ; 116( 2): 1-16.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00022-025-00751-y
    • Vancouver

      Garcia E, Manfio F. Einstein submanifolds with parallel mean curvature vector field into 'S POT.N' × R [Internet]. Journal of Geometry. 2025 ; 116( 2): 1-16.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00022-025-00751-y
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Assunto: GEOMETRIA DIFERENCIAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, Adriano Cavalcante e MANFIO, Fernando. Umbilicity of constant mean curvature hypersurfaces into space forms. Journal of Mathematical Analysis and Applications, v. 537, p. 1-13, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2024.128316. Acesso em: 08 out. 2025.
    • APA

      Bezerra, A. C., & Manfio, F. (2024). Umbilicity of constant mean curvature hypersurfaces into space forms. Journal of Mathematical Analysis and Applications, 537, 1-13. doi:10.1016/j.jmaa.2024.128316
    • NLM

      Bezerra AC, Manfio F. Umbilicity of constant mean curvature hypersurfaces into space forms [Internet]. Journal of Mathematical Analysis and Applications. 2024 ; 537 1-13.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jmaa.2024.128316
    • Vancouver

      Bezerra AC, Manfio F. Umbilicity of constant mean curvature hypersurfaces into space forms [Internet]. Journal of Mathematical Analysis and Applications. 2024 ; 537 1-13.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jmaa.2024.128316
  • Source: Annali di Matematica Pura ed Applicata. Unidade: ICMC

    Subjects: GEOMETRIA DIFERENCIAL, SUBVARIEDADES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIMA, Ronaldo Freire de e MANFIO, Fernando e SANTOS, João Paulo dos. Hypersurfaces of constant higher‑order mean curvature in M × ℝ. Annali di Matematica Pura ed Applicata, v. 201, n. 6, p. 2979-3028, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10231-022-01229-3. Acesso em: 08 out. 2025.
    • APA

      Lima, R. F. de, Manfio, F., & Santos, J. P. dos. (2022). Hypersurfaces of constant higher‑order mean curvature in M × ℝ. Annali di Matematica Pura ed Applicata, 201( 6), 2979-3028. doi:10.1007/s10231-022-01229-3
    • NLM

      Lima RF de, Manfio F, Santos JP dos. Hypersurfaces of constant higher‑order mean curvature in M × ℝ [Internet]. Annali di Matematica Pura ed Applicata. 2022 ; 201( 6): 2979-3028.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s10231-022-01229-3
    • Vancouver

      Lima RF de, Manfio F, Santos JP dos. Hypersurfaces of constant higher‑order mean curvature in M × ℝ [Internet]. Annali di Matematica Pura ed Applicata. 2022 ; 201( 6): 2979-3028.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s10231-022-01229-3
  • Source: Results in Mathematics. Unidade: ICMC

    Subjects: GEOMETRIA DIFERENCIAL, SUBVARIEDADES RIEMANNIANAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIMA, Ronaldo Freire de e MANFIO, Fernando e SANTOS, João Paulo dos. Einstein hypersurfaces of warped product spaces. Results in Mathematics, v. 77, n. 6, p. 1-26, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00025-022-01758-6. Acesso em: 08 out. 2025.
    • APA

      Lima, R. F. de, Manfio, F., & Santos, J. P. dos. (2022). Einstein hypersurfaces of warped product spaces. Results in Mathematics, 77( 6), 1-26. doi:10.1007/s00025-022-01758-6
    • NLM

      Lima RF de, Manfio F, Santos JP dos. Einstein hypersurfaces of warped product spaces [Internet]. Results in Mathematics. 2022 ; 77( 6): 1-26.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00025-022-01758-6
    • Vancouver

      Lima RF de, Manfio F, Santos JP dos. Einstein hypersurfaces of warped product spaces [Internet]. Results in Mathematics. 2022 ; 77( 6): 1-26.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00025-022-01758-6
  • Source: Annals of Global Analysis and Geometry. Unidade: ICMC

    Subjects: GEOMETRIA GLOBAL, EQUAÇÕES DIFERENCIAIS PARCIAIS, SUBVARIEDADES, VALORES PRÓPRIOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MANFIO, Fernando e ROTH, Julien e UPADHYAY, Abhitosh. Extrinsic eigenvalues upper bounds for submanifolds in weighted manifolds. Annals of Global Analysis and Geometry, v. 62, n. 3, p. 489-505, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10455-022-09862-0. Acesso em: 08 out. 2025.
    • APA

      Manfio, F., Roth, J., & Upadhyay, A. (2022). Extrinsic eigenvalues upper bounds for submanifolds in weighted manifolds. Annals of Global Analysis and Geometry, 62( 3), 489-505. doi:10.1007/s10455-022-09862-0
    • NLM

      Manfio F, Roth J, Upadhyay A. Extrinsic eigenvalues upper bounds for submanifolds in weighted manifolds [Internet]. Annals of Global Analysis and Geometry. 2022 ; 62( 3): 489-505.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s10455-022-09862-0
    • Vancouver

      Manfio F, Roth J, Upadhyay A. Extrinsic eigenvalues upper bounds for submanifolds in weighted manifolds [Internet]. Annals of Global Analysis and Geometry. 2022 ; 62( 3): 489-505.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s10455-022-09862-0
  • Source: Caderno de resumos. Conference titles: Simpósio de Matemática para a Graduação - SIM. Unidade: ICMC

    Subjects: COHOMOLOGIA, VARIEDADES DIFERENCIÁVEIS

    PrivadoAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CABALLERO, Nícolas Roberto Ribeiro. Cohomologia de De Rham e aplicações. 2022, Anais.. São Carlos: ICMC-USP, 2022. Disponível em: https://sites.google.com/usp.br/sim2022/pagina-inicial. Acesso em: 08 out. 2025.
    • APA

      Caballero, N. R. R. (2022). Cohomologia de De Rham e aplicações. In Caderno de resumos. São Carlos: ICMC-USP. Recuperado de https://sites.google.com/usp.br/sim2022/pagina-inicial
    • NLM

      Caballero NRR. Cohomologia de De Rham e aplicações [Internet]. Caderno de resumos. 2022 ;[citado 2025 out. 08 ] Available from: https://sites.google.com/usp.br/sim2022/pagina-inicial
    • Vancouver

      Caballero NRR. Cohomologia de De Rham e aplicações [Internet]. Caderno de resumos. 2022 ;[citado 2025 out. 08 ] Available from: https://sites.google.com/usp.br/sim2022/pagina-inicial

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025