Filtros : "Financiamento FAPESP" "IQSC" "Molecular Catalysis" Limpar

Filtros



Refine with date range


  • Source: Molecular Catalysis. Unidades: IQSC, EESC

    Subjects: CATALISADORES, BACTÉRIAS, NANOPARTÍCULAS, OURO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VIANA, Juliana Galan et al. Biological synthesis of gold nanoparticles by endophytic bacterium Priestia megaterium (CBMAI 2841) and their application as a catalyst in Knoevenagel reaction. Molecular Catalysis, v. 585, p. art. 115303 ( 1-11), 2025Tradução . . Disponível em: https://doi.org/10.1016/j.mcat.2025.115303. Acesso em: 08 out. 2025.
    • APA

      Viana, J. G., Moraes, D. A. de, Calixto, L. A., Jimenez, D. E. Q., Porto, A. L. M., & Varanda, L. C. (2025). Biological synthesis of gold nanoparticles by endophytic bacterium Priestia megaterium (CBMAI 2841) and their application as a catalyst in Knoevenagel reaction. Molecular Catalysis, 585, art. 115303 ( 1-11). doi:10.1016/j.mcat.2025.115303
    • NLM

      Viana JG, Moraes DA de, Calixto LA, Jimenez DEQ, Porto ALM, Varanda LC. Biological synthesis of gold nanoparticles by endophytic bacterium Priestia megaterium (CBMAI 2841) and their application as a catalyst in Knoevenagel reaction [Internet]. Molecular Catalysis. 2025 ; 585 art. 115303 ( 1-11).[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.mcat.2025.115303
    • Vancouver

      Viana JG, Moraes DA de, Calixto LA, Jimenez DEQ, Porto ALM, Varanda LC. Biological synthesis of gold nanoparticles by endophytic bacterium Priestia megaterium (CBMAI 2841) and their application as a catalyst in Knoevenagel reaction [Internet]. Molecular Catalysis. 2025 ; 585 art. 115303 ( 1-11).[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.mcat.2025.115303
  • Source: Molecular Catalysis. Unidade: IQSC

    Subjects: CATÁLISE, METANO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MORAES, Pedro Ivo R. e PERAÇA, Carina S.T. e SILVA, Juarez Lopes Ferreira da. Single-atom catalysts on ceria substrates: Exploring cluster and surface effects on methane activation. Molecular Catalysis, v. 564, p. 114318, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.mcat.2024.114318. Acesso em: 08 out. 2025.
    • APA

      Moraes, P. I. R., Peraça, C. S. T., & Silva, J. L. F. da. (2024). Single-atom catalysts on ceria substrates: Exploring cluster and surface effects on methane activation. Molecular Catalysis, 564, 114318. doi:10.1016/j.mcat.2024.114318
    • NLM

      Moraes PIR, Peraça CST, Silva JLF da. Single-atom catalysts on ceria substrates: Exploring cluster and surface effects on methane activation [Internet]. Molecular Catalysis. 2024 ;564 114318.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.mcat.2024.114318
    • Vancouver

      Moraes PIR, Peraça CST, Silva JLF da. Single-atom catalysts on ceria substrates: Exploring cluster and surface effects on methane activation [Internet]. Molecular Catalysis. 2024 ;564 114318.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.mcat.2024.114318
  • Source: Molecular Catalysis. Unidades: IFSC, IQ, IQSC

    Subjects: LIGANTES, RUTÊNIO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CAETANO, Renan Bernard Gléria et al. Intriguing combinations of p-cymene, chloride ion, phosphines, and amines in ruthenium metal centers: which ligand decoordinates for ROMP?. Molecular Catalysis, v. 569, p. 114551-1114551-12, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.mcat.2024.114551. Acesso em: 08 out. 2025.
    • APA

      Caetano, R. B. G., Santiago, P. H. de O., Ellena, J., Oliveira, D. A. S., Braga, A. A. C., & Lima Neto, B. dos S. (2024). Intriguing combinations of p-cymene, chloride ion, phosphines, and amines in ruthenium metal centers: which ligand decoordinates for ROMP? Molecular Catalysis, 569, 114551-1114551-12. doi:10.1016/j.mcat.2024.114551
    • NLM

      Caetano RBG, Santiago PH de O, Ellena J, Oliveira DAS, Braga AAC, Lima Neto B dos S. Intriguing combinations of p-cymene, chloride ion, phosphines, and amines in ruthenium metal centers: which ligand decoordinates for ROMP? [Internet]. Molecular Catalysis. 2024 ; 569 114551-1114551-12.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.mcat.2024.114551
    • Vancouver

      Caetano RBG, Santiago PH de O, Ellena J, Oliveira DAS, Braga AAC, Lima Neto B dos S. Intriguing combinations of p-cymene, chloride ion, phosphines, and amines in ruthenium metal centers: which ligand decoordinates for ROMP? [Internet]. Molecular Catalysis. 2024 ; 569 114551-1114551-12.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.mcat.2024.114551
  • Source: Molecular Catalysis. Unidade: IQSC

    Subjects: CATÁLISE, HIDROGENAÇÃO, GÁS CARBÔNICO, METANOL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTANA, Cássia Sidney et al. Influence of Al, Cr, Ga, or Zr as promoters on the performance of Cu/ZnO catalyst for CO2 hydrogenation to methanol. Molecular Catalysis, v. 528, p. 112512, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.mcat.2022.112512. Acesso em: 08 out. 2025.
    • APA

      Santana, C. S., Rasteiro , L. F., Marcos, F. C. F., Assaf, E. M., Gomes, J. F., & Assaf, J. M. (2022). Influence of Al, Cr, Ga, or Zr as promoters on the performance of Cu/ZnO catalyst for CO2 hydrogenation to methanol. Molecular Catalysis, 528, 112512. doi:10.1016/j.mcat.2022.112512
    • NLM

      Santana CS, Rasteiro LF, Marcos FCF, Assaf EM, Gomes JF, Assaf JM. Influence of Al, Cr, Ga, or Zr as promoters on the performance of Cu/ZnO catalyst for CO2 hydrogenation to methanol [Internet]. Molecular Catalysis. 2022 ; 528 112512.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.mcat.2022.112512
    • Vancouver

      Santana CS, Rasteiro LF, Marcos FCF, Assaf EM, Gomes JF, Assaf JM. Influence of Al, Cr, Ga, or Zr as promoters on the performance of Cu/ZnO catalyst for CO2 hydrogenation to methanol [Internet]. Molecular Catalysis. 2022 ; 528 112512.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.mcat.2022.112512
  • Source: Molecular Catalysis. Unidade: IQSC

    Subjects: ESTERIFICAÇÃO, AMIDAS, SÍNTESE ORGÂNICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIMA, Rafaely Nascimento e ANJOS, Charlene Souza dos e PORTO, Andre Luiz Meleiro. Biocatalytic synthesis of lipophilic amides by the lipase of Candida antarctica type B. Molecular Catalysis, v. 530, p. 112635, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.mcat.2022.112635. Acesso em: 08 out. 2025.
    • APA

      Lima, R. N., Anjos, C. S. dos, & Porto, A. L. M. (2022). Biocatalytic synthesis of lipophilic amides by the lipase of Candida antarctica type B. Molecular Catalysis, 530, 112635. doi:10.1016/j.mcat.2022.112635
    • NLM

      Lima RN, Anjos CS dos, Porto ALM. Biocatalytic synthesis of lipophilic amides by the lipase of Candida antarctica type B [Internet]. Molecular Catalysis. 2022 ;530 112635.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.mcat.2022.112635
    • Vancouver

      Lima RN, Anjos CS dos, Porto ALM. Biocatalytic synthesis of lipophilic amides by the lipase of Candida antarctica type B [Internet]. Molecular Catalysis. 2022 ;530 112635.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.mcat.2022.112635
  • Source: Molecular Catalysis. Unidade: IQSC

    Subjects: FLAVONOIDES, FUNGOS, BIOTRANSFORMAÇÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MATOS, Iara Lisboa de et al. Stereoselective reduction of flavanones by marine-derived fungi. Molecular Catalysis, v. 513, p. 111734, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.biochi.2021.08.002. Acesso em: 08 out. 2025.
    • APA

      Matos, I. L. de, Birolli, W. G., Santos, D. de A., Nitschke, M., & Porto, A. L. M. (2021). Stereoselective reduction of flavanones by marine-derived fungi. Molecular Catalysis, 513, 111734. doi:10.1016/j.biochi.2021.08.002
    • NLM

      Matos IL de, Birolli WG, Santos D de A, Nitschke M, Porto ALM. Stereoselective reduction of flavanones by marine-derived fungi [Internet]. Molecular Catalysis. 2021 ;513 111734.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.biochi.2021.08.002
    • Vancouver

      Matos IL de, Birolli WG, Santos D de A, Nitschke M, Porto ALM. Stereoselective reduction of flavanones by marine-derived fungi [Internet]. Molecular Catalysis. 2021 ;513 111734.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.biochi.2021.08.002

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025