Filtros : "Financiamento FAPESP" "EQUAÇÕES DIFERENCIAIS ORDINÁRIAS" "2023" Limpar

Filtros



Refine with date range


  • Source: Applied Mathematical Modelling. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, MATEMÁTICA APLICADA, BIOLOGIA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOPES, Luís Eduardo dos Santos e FERREIRA, Cláudia P e OLIVA, Sérgio Muniz. Exploring the impact of temperature on the efficacy of replacing a wild Aedes aegypti population by a Wolbachia-carrying one. Applied Mathematical Modelling, v. 123, p. 392-405, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.apm.2023.07.007. Acesso em: 07 out. 2025.
    • APA

      Lopes, L. E. dos S., Ferreira, C. P., & Oliva, S. M. (2023). Exploring the impact of temperature on the efficacy of replacing a wild Aedes aegypti population by a Wolbachia-carrying one. Applied Mathematical Modelling, 123, 392-405. doi:10.1016/j.apm.2023.07.007
    • NLM

      Lopes LE dos S, Ferreira CP, Oliva SM. Exploring the impact of temperature on the efficacy of replacing a wild Aedes aegypti population by a Wolbachia-carrying one [Internet]. Applied Mathematical Modelling. 2023 ; 123 392-405.[citado 2025 out. 07 ] Available from: https://doi.org/10.1016/j.apm.2023.07.007
    • Vancouver

      Lopes LE dos S, Ferreira CP, Oliva SM. Exploring the impact of temperature on the efficacy of replacing a wild Aedes aegypti population by a Wolbachia-carrying one [Internet]. Applied Mathematical Modelling. 2023 ; 123 392-405.[citado 2025 out. 07 ] Available from: https://doi.org/10.1016/j.apm.2023.07.007
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ESTOCÁSTICAS, INTEGRAL DE HENSTOCK, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, OPERADORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello et al. Operator-valued stochastic differential equations in the context of Kurzweil-like equations. Journal of Mathematical Analysis and Applications, v. No 2023, n. 2, p. 1-27, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2023.127464. Acesso em: 07 out. 2025.
    • APA

      Bonotto, E. de M., Collegari, R., Federson, M., & Gill, T. (2023). Operator-valued stochastic differential equations in the context of Kurzweil-like equations. Journal of Mathematical Analysis and Applications, No 2023( 2), 1-27. doi:10.1016/j.jmaa.2023.127464
    • NLM

      Bonotto E de M, Collegari R, Federson M, Gill T. Operator-valued stochastic differential equations in the context of Kurzweil-like equations [Internet]. Journal of Mathematical Analysis and Applications. 2023 ; No 2023( 2): 1-27.[citado 2025 out. 07 ] Available from: https://doi.org/10.1016/j.jmaa.2023.127464
    • Vancouver

      Bonotto E de M, Collegari R, Federson M, Gill T. Operator-valued stochastic differential equations in the context of Kurzweil-like equations [Internet]. Journal of Mathematical Analysis and Applications. 2023 ; No 2023( 2): 1-27.[citado 2025 out. 07 ] Available from: https://doi.org/10.1016/j.jmaa.2023.127464
  • Source: Bulletin of the Brazilian Mathematical Society : New Series. Unidade: ICMC

    Subjects: GEOMETRIA DIFERENCIAL CLÁSSICA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, FORMAS QUADRÁTICAS, CONGRUÊNCIAS, SINGULARIDADES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRUCE, James William e TARI, Farid. Binary differential equations associated to congruences of lines in Euclidean 3-space. Bulletin of the Brazilian Mathematical Society : New Series, v. 54, n. 4, p. 1-21, 2023Tradução . . Disponível em: https://doi.org/10.1007/s00574-023-00373-5. Acesso em: 07 out. 2025.
    • APA

      Bruce, J. W., & Tari, F. (2023). Binary differential equations associated to congruences of lines in Euclidean 3-space. Bulletin of the Brazilian Mathematical Society : New Series, 54( 4), 1-21. doi:10.1007/s00574-023-00373-5
    • NLM

      Bruce JW, Tari F. Binary differential equations associated to congruences of lines in Euclidean 3-space [Internet]. Bulletin of the Brazilian Mathematical Society : New Series. 2023 ; 54( 4): 1-21.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s00574-023-00373-5
    • Vancouver

      Bruce JW, Tari F. Binary differential equations associated to congruences of lines in Euclidean 3-space [Internet]. Bulletin of the Brazilian Mathematical Society : New Series. 2023 ; 54( 4): 1-21.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s00574-023-00373-5
  • Source: Communications in Mathematical Physics. Unidade: ICMC

    Subjects: TEOREMA DO PONTO FIXO, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, FÍSICA MATEMÁTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BAIK, Jinho e PROKHOROV, Andrei e SILVA, Guilherme Lima Ferreira da. Differential equations for the KPZ and periodic KPZ fixed points. Communications in Mathematical Physics, v. 401, n. 2, p. 1753-1806, 2023Tradução . . Disponível em: https://doi.org/10.1007/s00220-023-04683-z. Acesso em: 07 out. 2025.
    • APA

      Baik, J., Prokhorov, A., & Silva, G. L. F. da. (2023). Differential equations for the KPZ and periodic KPZ fixed points. Communications in Mathematical Physics, 401( 2), 1753-1806. doi:10.1007/s00220-023-04683-z
    • NLM

      Baik J, Prokhorov A, Silva GLF da. Differential equations for the KPZ and periodic KPZ fixed points [Internet]. Communications in Mathematical Physics. 2023 ; 401( 2): 1753-1806.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s00220-023-04683-z
    • Vancouver

      Baik J, Prokhorov A, Silva GLF da. Differential equations for the KPZ and periodic KPZ fixed points [Internet]. Communications in Mathematical Physics. 2023 ; 401( 2): 1753-1806.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s00220-023-04683-z
  • Source: Mathematical Modelling of Natural Phenomena. Unidade: ICMC

    Subjects: MODELOS MATEMÁTICOS, EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, CÉLULAS-TRONCO, NEOPLASIAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MEACCI, Luca e PRIMICERIO, Mario. Interaction between crowding and growth in tumours with stem cells: conceptual mathematical modelling. Mathematical Modelling of Natural Phenomena, v. 18, p. 1-22, 2023Tradução . . Disponível em: https://doi.org/10.1051/mmnp/2023011. Acesso em: 07 out. 2025.
    • APA

      Meacci, L., & Primicerio, M. (2023). Interaction between crowding and growth in tumours with stem cells: conceptual mathematical modelling. Mathematical Modelling of Natural Phenomena, 18, 1-22. doi:10.1051/mmnp/2023011
    • NLM

      Meacci L, Primicerio M. Interaction between crowding and growth in tumours with stem cells: conceptual mathematical modelling [Internet]. Mathematical Modelling of Natural Phenomena. 2023 ; 18 1-22.[citado 2025 out. 07 ] Available from: https://doi.org/10.1051/mmnp/2023011
    • Vancouver

      Meacci L, Primicerio M. Interaction between crowding and growth in tumours with stem cells: conceptual mathematical modelling [Internet]. Mathematical Modelling of Natural Phenomena. 2023 ; 18 1-22.[citado 2025 out. 07 ] Available from: https://doi.org/10.1051/mmnp/2023011
  • Source: Geometriae Dedicata. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, TEORIA DA BIFURCAÇÃO, CURVAS ALGÉBRICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOTA, Marcos Coutinho e OLIVEIRA, Regilene Delazari dos Santos e TRAVAGLINI, Ana Maria. The interplay among the topological bifurcation diagram, integrability and geometry for the family QSH(D). Geometriae Dedicata, v. 217, n. 6, p. 1-42, 2023Tradução . . Disponível em: https://doi.org/10.1007/s10711-023-00827-6. Acesso em: 07 out. 2025.
    • APA

      Mota, M. C., Oliveira, R. D. dos S., & Travaglini, A. M. (2023). The interplay among the topological bifurcation diagram, integrability and geometry for the family QSH(D). Geometriae Dedicata, 217( 6), 1-42. doi:10.1007/s10711-023-00827-6
    • NLM

      Mota MC, Oliveira RD dos S, Travaglini AM. The interplay among the topological bifurcation diagram, integrability and geometry for the family QSH(D) [Internet]. Geometriae Dedicata. 2023 ; 217( 6): 1-42.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10711-023-00827-6
    • Vancouver

      Mota MC, Oliveira RD dos S, Travaglini AM. The interplay among the topological bifurcation diagram, integrability and geometry for the family QSH(D) [Internet]. Geometriae Dedicata. 2023 ; 217( 6): 1-42.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10711-023-00827-6
  • Source: Journal of Dynamical and Control Systems. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PEREZ, Otavio Henrique e RONDÓN, Gabriel e SILVA, Paulo Ricardo da. Slow-fast normal forms arising from piecewise smooth vector fields. Journal of Dynamical and Control Systems, v. 29, p. 1709-1726, 2023Tradução . . Disponível em: https://doi.org/10.1007/s10883-023-09657-x. Acesso em: 07 out. 2025.
    • APA

      Perez, O. H., Rondón, G., & Silva, P. R. da. (2023). Slow-fast normal forms arising from piecewise smooth vector fields. Journal of Dynamical and Control Systems, 29, 1709-1726. doi:10.1007/s10883-023-09657-x
    • NLM

      Perez OH, Rondón G, Silva PR da. Slow-fast normal forms arising from piecewise smooth vector fields [Internet]. Journal of Dynamical and Control Systems. 2023 ; 29 1709-1726.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10883-023-09657-x
    • Vancouver

      Perez OH, Rondón G, Silva PR da. Slow-fast normal forms arising from piecewise smooth vector fields [Internet]. Journal of Dynamical and Control Systems. 2023 ; 29 1709-1726.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s10883-023-09657-x
  • Source: Discrete and Continuous Dynamical Systems : Series B. Unidade: ICMC

    Subjects: ANÁLISE GLOBAL, ATRATORES, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, GEOMETRIA DIFERENCIAL, ESPAÇOS SIMÉTRICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de et al. Structure of non-autonomous attractors for a class of diffusively coupled ODE. Discrete and Continuous Dynamical Systems : Series B, v. 28, n. Ja 2023, p. 426-448, 2023Tradução . . Disponível em: https://doi.org/10.3934/dcdsb.2022083. Acesso em: 07 out. 2025.
    • APA

      Carvalho, A. N. de, Rocha, L. R. N., Langa, J. A., & Obaya, R. (2023). Structure of non-autonomous attractors for a class of diffusively coupled ODE. Discrete and Continuous Dynamical Systems : Series B, 28( Ja 2023), 426-448. doi:10.3934/dcdsb.2022083
    • NLM

      Carvalho AN de, Rocha LRN, Langa JA, Obaya R. Structure of non-autonomous attractors for a class of diffusively coupled ODE [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2023 ; 28( Ja 2023): 426-448.[citado 2025 out. 07 ] Available from: https://doi.org/10.3934/dcdsb.2022083
    • Vancouver

      Carvalho AN de, Rocha LRN, Langa JA, Obaya R. Structure of non-autonomous attractors for a class of diffusively coupled ODE [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2023 ; 28( Ja 2023): 426-448.[citado 2025 out. 07 ] Available from: https://doi.org/10.3934/dcdsb.2022083

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025