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Abstract. We study planar piecewise smooth differential sys-
tems of the form

ż = Z(z) =
1 + sgn(F )

2
X(z) +

1− sgn(F )

2
Y (z),

where F : R2 → R is a smooth map having 0 as a regular value.
We consider linear regularizations Zφ

ε of Z by replacing sgn(F ) by
φ(F/ε) in the last equation, with ε > 0 small and φ being a tran-
sition function (not necessarily monotonic). Nonlinear regulariza-
tions of the vector field Z whose transition function is monotonic
are considered too. It is a well-known fact that the regularized
system is a slow–fast system. In this paper we study typical sin-
gularities of slow-fast systems that arise from (linear or nonlinear)
regularizations, namely fold, transcritical and pitchfork singulari-
ties. Furthermore, the dependence of the slow-fast system on the
graphical properties of the transition function is investigated.

1. Introduction

In real life there are phenomena whose mathematical models are
expressed by piecewise smooth vector fields, which have been studied
at least since 1937. These systems are used in many branches of ap-
plied sciences, for example, Physics, Control Theory, Economics, Cell
Mitosis, etc. For more details see, for instance, [3, 5].

A piecewise smooth vector field (or PSVF for short) is defined as
follows: let Σ be a closed subset with empty interior of the ambient
space (for example, a manifold embedded in Rn). Such subset is called
discontinuity locus and it divides the ambient space in finitely many
open subsets {Ui}ki=1. In each open subset Ui is defined a smooth vector
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field. This paper deals with the case where a smooth curve divides a
neighbourhood of 0 ∈ R2 in two open regions. See Section 2 for a
precise definition.

One of the most important question concerning PSVF’s is: how to
define the dynamics in Σ? In other words, how to define the transition
between the dynamics defined in two different open sets?

Filippov [5] gave an answer defining the dynamics in Σ as the convex
combination of two vector fields. This defines the so called Sliding
vector field. We say that this vector field defined according to Filippov’s
ideas follows the Filippov’s convention.

However, for some models, the Filippov’s convention is not sufficient
to describe the dynamics. For example, in [15] a model involving fric-
tion between an object and a flat surface was studied. The author gave
an example that Filippov’s convention takes into account only kinetic
friction, while it is possible to consider static friction as well.

Another way to define the dynamics in the discontinuity locus Σ is
combining two powerful tools: Regularizations of PSVF’s and Blow-
ups. A regularization process that is compatible with the Filippov’s
convention is the Sotomayor-Teixeira regularization [22], which con-
sists in obtaining a one-parameter family of smooth vector fields Zε
converging to Z when ε → 0 (see Subsection 2.2). By using blow-
up techniques, the regularized system ż = Zε(z) becomes a slow-fast
system, and therefore we are able to apply classical results on geomet-
ric singular perturbation theory (see Subsection 2.4) in the study of
PSVF’s. Such a link between Regularization Processes and geometric
singular perturbation theory is a recent approach in mathematics and
we refer to [1, 16, 17, 18, 19, 20] for further details. A similar approach
can also be seen in [10].

Different regularization processes lead to different slow-fast systems,
which gives rise to different sliding or sewing regions (see [19, 20, 21]).
In this paper, we consider linear regularizations and nonlinear regu-
larizations. See subsections 2.2 and 2.3 for precise definitions.

The dynamics of the linearly regularized system depends on the so
called transition function φ, which can be monotonic or non monotonic.
In this paper we highlighted the relation between the properties of the
graph of φ, the properties of the slow-fast system, and the sliding
regions of the PSVF’s. See Theorem A below.

The main goal of this paper is to study typical singularities of slow-
fast systems that arise from (linear or nonlinear) regularizations. For
both linear and nonlinear regularizations are presented examples of
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PSVF’s such that, after (linear or nonlinear) regularization and direc-
tional blow-up, the slow-fast system presents normally hyperbolic, fold,
transcritical or pitchfork singularities.

At some point, the reader may think that, after linear regularization
and blow-up, it is possible to generate any slow-fast singularity, since
it is just a matter of a suitable choice of the transition function. In
general, this is not true. Indeed, we show that it does not exist a
transition function that generate a pitchfork singularity. However, if
we consider nonlinear regularizations it is possible to generate such a
singularity (see Example 13). This shows that nonlinear regularizations
are more general than the linear ones (see also [18, 20]).

Our main results, Theorems A, B and C are stated and proved in
Section 3. In what follows, we briefly describe them.

Firstly, consider linear regularizations. Suppose that we drop the
monotonicity condition of the transition function φ. In this context,
we will prove that the critical points of φ give rise to non normally
hyperbolic points of the critical set C0 of ż = Zε(z). For more details
see Item (a) of Theorem A.

In addition, item (b) of Theorem A assures that we extend the
classical Filippov sliding region when the transition function satisfy
|φ(x0)| > 1 for some x0 in the open interval (−1, 1). According to item
(c) of the same Theorem, the dynamics in this extended sliding region
is naturally defined using the classical Filippov sliding vector field. It
is important to emphasize that item (c) of Theorem A was already
proved in [21, Theorem 3]. For completness sake, we incorporated it in
the statement of Theorem A and proved it as well.

Finally, item (d) of Theorem A says that there are cases in which it
is not possible to apply geometric singular perturbation theory in order
to define the sliding dynamics in some points of Σ. See Figure 1.

Slow-fast normal forms are well known in the literature (see Sub-
section 2.5 and the references therein). In Theorem B we state condi-
tions that both PSVF and transition function must satisfy in order to
generate classical slow-fast normal forms, such as fold and transcritical
singularities. Moreover, we prove that there are slow-fast normal forms
that can not be generated by linear regularization processes. This is
the case of the pitchfork singularity. See Figure 2.

In order to generate pitchfork singularities, we must consider nonlin-
ear regularization. Theorem C gives the conditions that must satisfy
both monotonic transition function and vector field associated with the
nonlinearly regularized system to generate this type of singularity.

Fold, transcritical and pitchfork singularities have very interesting
dynamical properties. For example, M. Krupa, P. Szmolyan in [11,
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Figure 1. Monotonic transition function (left) and non mono-
tonic transition function (right). The monotonic one generates only
normally hyperbolic critical sets, and the sliding region coincides
with the one proposed by Filippov. The non monotonic one has a
critical point, which generates a non normally hyperbolic point of
the critical manifold. Moreover, in this example, such a transition
function extends the classical notion of sliding region.

12] studied the dynamics of the slow-fast system around this type of
singularities for ε > 0 and built a map of transition between transversal
sections. By applying these results together with Theorems B and C
one can determine the local dynamics of the system regularized around
these singularities and thus it is possible to make a global study of the
dynamics of these systems.

Figure 2. From the left to the right: normally hyperbolic, fold,
transcritical and pitchfork points of a slow-fast system. It is not
possible to generate the last one with linear regularizations, for
any transition function. However, it is possible to generate it with
nonlinear regularizations. The critical set is highlighted in green.

The paper is organized as follows. In Section 2 we present some
introductory notions on PSVF, regularization processes, geometric sin-
gular perturbation theory and slow-fast normal forms. In Section 3 we
state and prove Theorems A, B, and C.

2. Preliminaries on piecewise smooth vector fields and
geometric singular perturbation theory

This section is devoted to establishing some basic results and nota-
tion that will be used throughout the paper.
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2.1. Piecewise smooth vector fields.
Let F : U ⊂ R2 → R be a sufficientlly smooth function and consider

Cr vector fields X, Y : U ⊂ R2 → R2. A Cr piecewise smooth vector
field Z : U ⊂ R2 → R2 (or PSVF for short) is given by

(1) Z(x) =
1

2

((
1 + sgn

(
F (x)

))
X(x) +

(
1− sgn

(
F (x)

))
Y (x)

)
where x ∈ U and we assume that Z is multi-valued in the set

Σ = {x ∈ U ;F (x) = 0},

which is called discontinuity locus or discontinuity set. The set of all
Cr piecewise smooth vector fields is denoted by Ωr. A PSVF is also
denoted by Z = (X, Y ) in order to emphasize the dependency on the
smooth vector fields X and Y .
The Lie derivative of F with respect to the vector field X is given

by XF = ⟨X,∇F ⟩ and X iF = ⟨X,∇X i−1F ⟩ for all integer i ≥ 2. This
allows us to define the following regions in Σ:

(1) Filippov sewing region:

Σw =
{
x ∈ Σ ; XF (x) · Y F (x) > 0

}
;

(2) Filippov sliding region:

Σs =
{
x ∈ Σ ; XF (x) · Y F (x) < 0

}
.

We emphasize that in the literature these sets are simply called
sewing region and sliding region, respectively. Nevertheless, in [19]
the authors presented a new definition of such regions, which depends
on the type of regularization adopted (see Definitions 7 and 8). Due
to this fact, we will call these regions as Filippov regions in order to
stress that we are talking about the classical definition of sewing and
sliding. See Figure 3.

A point x0 ∈ Σ is a PS-tangency point ifXF (x0) = 0 or Y F (x0) = 0.
We say that x0 is a PS-fold point ofX ifXF (x0) = 0 andX2F (x0) ̸= 0.
If X2F (x0) > 0, x0 is a PS-visible fold of X and if X2F (x0) < 0 we
say that x0 is an PS-invisible fold of X. Analogously we define PS-
tangency points and PS-fold points of Y . Note that if Y 2F (x0) < 0,
x0 is a PS-visible fold of Y and if Y 2F (x0) > 0 the point x0 is a PS-
invisible fold of Y . If x0 is a PS-fold of both X and Y , we say that
x0 is a PS-fold-fold. Finally, we say that x0 ∈ Σ is a PS-cusp point if
XF (x0) = X2F (x0) = 0 and X3F (x0) ̸= 0.

Singularities of slow-fast systems will be discussed later. Through-
out this paper, a singularity of a PSVF will be called PS-singularity,
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and a singularity of a slow-fast system when ε = 0 will be called SF-
singularity.

Following Filippov’s convention [5], one can define a vector field in
Σs ⊂ Σ. The Filippov sliding vector field associated to Z ∈ Ωr is the
vector field ZΣ : Σ → TΣ given by

(2) ZΣ(x) =
1

Y F −XF

(
X · Y F − Y ·XF

)
,

which is the convex combination between X and Y .
A regularization of a PSVF, Z, is a 1-parameter family of smooth

vector fields Zε, ε > 0, satisfying that Zε converges pointwise to Z on
R2\Σ, when ε → 0 (see [20]). In this paper is considered two types of
regularizations: the linear and nonlinear ones.

2.2. Linear regularization of piecewise smooth vector fields.
The regularization process proposed by Sotomayor and Teixeira in

[22] is a powerfull tool in the study of piecewise smooth vector fields.
With this technique, it is possible to construct a family of smooth
vector fields {Zε}ε such that Zε → Z0 = Z when ε→ 0.

We say that φ : R → R is a transition function if the following
conditions are satisfied:

(1) φ is sufficiently smooth;
(2) φ(t) = −1 if t ≤ −1 and φ(t) = 1 if t ≥ 1;
(3) φ′(t) > 0 if s ∈ (−1, 1). This condition is called monotonicity.

Throughout this paper it will be clear that, by dropping the mono-
tonicity condition, it is possible to obtain different critical manifolds of
the slow-fast system associated to the regularization. Moreover, non
monotonic transition functions can expand the Filippov sliding region
in Σ (see [19] and Theorem A below).

Definition 1. Let φ be a transition function. A φ-linear regularization
of a piecewise smooth vector field Z = (X, Y ) is an one-parameter
family Zφ

ε of smooth vector fields given by

(3) Zφ
ε (x) =

(
1

2
+
φε
(
F (x)

)
2

)
X(x) +

(
1

2
−
φε
(
F (x)

)
2

)
Y (x);

with φε(s) = φ
(s
ε

)
for ε > 0. When φ is monotonic, we say that (3)

is the ST-regularization (Sotomayor–Teixeira Regularization) of Z.

Intuitively, regularizing piecewise smooth vector field means to re-
place the discontinuity set Σ by a stripe (a tubular neighbourhood of
Σ) of width 2ε. Outside this stripe, the vector fields Zφ

ε and Z coincide,
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and inside the stripe the vector field Zφ
ε can be seen as the “average”

between X and Y .

Σ Σ

ε

−ε

ε

−ε

Figure 3. ST-Regularization of a Filippov sewing region (left)
and a Filippov sliding region (right).

2.3. Nonlinear regularization of piecewise smooth vector fields.
In [18, 20] the authors considered another way to generalize the notions
of sliding region and sliding vector field by means of nonlinear regular-
izations.

Definition 2. A continuous combination of X and Y is a 1-parameter

family of smooth vector fields Z̃(λ, .), with λ ∈ [−1, 1], such that Z̃(1, p) =

X(p), Z̃(−1, p) = Y (p), ∀p ∈ U .

Now we define φ−nonlinear regularization of Z = (X, Y ).

Definition 3. Let Z̃(λ, p) be a continuous combination of X and Y .
A φ−nonlinear regularization of Z = (X, Y ) is the 1-parameter family

given by Z̃(φ(F
ε
), p).

Recall that if F > ε, then φ(F
ε
) = 1 and Z̃(φ(F

ε
), p) = X(p); and if

F < −ε, then φ(F
ε
) = −1 and Z̃(φ(F

ε
), p) = Y (p) (see Figure 4).

In [18, Theorem 1], it was shown the following result: Let φ be a
monotonic transition function and ψ a non-monotonic transition func-
tion. If Zψ

ε is a ψ-linear regularization, then there exists an unique
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X(p)

Y (p)

Figure 4. Linear (red) and nonlinear (blue) regularizations.

continuous combination Z̃(λ, p) such that Zψ
ε (p) = Z̃(φ(F

ε
), p). How-

ever, in general the converse is not true (see Theorems B and C).

2.4. Geometric singular perturbation theory.
In the 1970s, Neil Fenichel wrote several papers on invariant mani-

fold theory, which allowed a rigorous study of slow-fast systems (i.e.,
systems of differential equations with multiple time scales). We refer
to [8, 9, 23] for a careful introduction on slow-fast systems, as well
as details of the proof given in Fenichel’s original paper [4]. The book
[13] contains introductory notions, applications and more sophisticated
concepts on this subject. For applications in Biology, see [7] and the
references therein. Finally, see [2] for results concerning geometric sin-
gular perturbation theory for systems with many time scales.

A system of the form

(4) εẋ = f(x, y, ε); ẏ = g(x, y, ε);

is called slow-fast system, where (x, y) ∈ R2, 0 < ε≪ 1 and f, g : R2 ×
R≥0 → R are sufficiently smooth. The dot · represents the derivative
of the functions x(τ) and y(τ) with respect to the variable τ .

If we write t = τ
ε
, then system (4) becomes

(5) x′ = f(x, y, ε); y′ = εg(x, y, ε);

in which the apostrophe ’ denotes the derivative of the functions x(t)
and y(t) with respect to the variable t. Observe that the parameter
ε = τ

t
represents the ratio of the time scales.

Consider equation (4) and set ε = 0. We obtain the so called slow
system given by

(6) 0 = f(x, y, 0); ẏ = g(x, y, 0).
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This equation is also known in the literature as reduced problem or
slow vector field. Note that (6) is not an ODE, but it is an algebraic
differential equation (ADE).

Solutions of (6) are contained in the set

C0 =
{
(x, y) ∈ R2 ; f(x, y, 0) = 0

}
.

Definition 4. The set C0 is called critical set. In the case where C0 is
a manifold, C0 is called critical manifold.

On the other hand, setting ε = 0 in equation (5) we obtain the so
called fast system

(7) x′ = f(x, y, 0); y′ = 0.

System (7) is also known in the literature as layer problem, layer
equation or fast vector field. Moreover, the system (7) can be seen as a
system of ordinary differential equations, where y ∈ R is a parameter
and the critical set C0 is a set of equilibrium points of (7).

The main goal of geometric singular perturbation theory is to study
systems (6) and (7) in order to obtain information of the full system
(4). Observe that the systems (4) and (5) are equivalent when ε > 0,
since they only differ by time scale.

Definition 5. We say that x0 ∈ C0 is normally hyperbolic if fx(x0) ̸=
0. The set of all normally hyperbolic points of C0 will be denoted by
NH(C0).

Recall that the nomenclature PS-singularity and SF-singularity is
adopted in order to emphasize when p is a singularity of the piecewise
smooth vector field (1) or a singularity of the slow system (6).

2.5. Normal forms of slow-fast systems.
In what follows we briefly recall some normal forms of slow-fast sys-

tems. An overview on this subject can be found in Chapter 4 of [13],
and the reader can see the references therein for further details of the
proofs. The normal forms of planar SF-generic transcritical and SF-
generic pitchfork singularities were given in [12].

We say that the critical manifold C0 = {f(x, y, 0) = 0} has a planar
SF-generic fold (or SF-fold for short) at the origin if

fx(0, 0, 0) = 0; fxx(0, 0, 0) ̸= 0;

fy(0, 0, 0) ̸= 0 and g(0, 0, 0) ̸= 0.
(8)
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In order to obtain a SF-generic transcritical singularity at the origin,
the planar slow-fast system (4) must satisfy the following conditions:

f(0, 0, 0) = fx(0, 0, 0) = fy(0, 0, 0) = 0;

detHes(f) < 0; fxx(0, 0, 0) ̸= 0 ̸= g(0, 0, 0);
(9)

where Hes(f) denotes the Hessian matrix of f .
On the other hand, in order to obtain a SF-generic pitchfork singu-

larity at the origin we must require the following conditions:

f(0, 0, 0) = fx(0, 0, 0) = fxx(0, 0, 0) = fy(0, 0, 0) = 0;

fxxx(0, 0, 0) ̸= 0, fxy(0, 0, 0) ̸= 0, g(0, 0, 0) ̸= 0.
(10)

The normal forms of planar SF-generic fold, SF-generic transcriti-
cal and SF-generic pitchfork singularities were given in [11, 12]. The
normal form of a normally hyperbolic point can be found in [13].

Theorem 6 gathers the results mentioned in the previous paragraph.
The notationO denotes the higher order terms of a function. Moreover,
in each case, λ denotes a constant that depends on the conditions of
non-degeneracy of each SF-singularity (see [11, 12, 13] for details).

Theorem 6. There exists a smooth change of coordinates such that for
(x, y) sufficiently small the System (5) can be written as

(a): If the slow-fast system (5) satisfies the non-degeneracy con-
ditions (8) of a planar SF-generic fold:

(11) x′ = y + x2 +O(x3, xy, y2, ε); y′ = ε
(
± 1 +O(x, y, ε)

)
;

(b): If the slow-fast system (5) satisfies the non-degeneracy con-
ditions (9) of a SF-generic transcritical singularity:

(12)

x′ = x2−y2+λε+O(x3, x2y, xy2, y3, εx, εy, ε2); y′ = ε
(
1+O(x, y, ε)

)
;

(c): If the slow-fast system (5) satisfies the non-degeneracy con-
ditions (10) of a SF-pitchfork singularity:

(13)

x′ = x(y−x2)+λε+O(x2y, xy2, y3, εx, εy, ε2); y′ = ε
(
±1+O(x, y, ε)

)
.

(d): If 0 ∈ C0 is a normally hyperbolic point:

(14)

{
x′ = Λ(x, y, ε)x;

y′ = ε
(
h(y, ε) +H(x, y, ε)(x)

)
;

where x is sufficiently small, Λ, h and H are Cr−1 in all argu-
ments. Moreover, Λ(x, y, ε) is non-zero, and H(x, y, ε) is linear
when applied to x.
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3. Regularizations and typical SF-singularities

The relation between (linear) regularization of piecewise smooth vector
fields and slow-fast systems had led mathematicians in a new direction
in the research in qualitative theory of ordinary differential equations.
By applying a directional blow-up, it is possible to transform a (lin-
early) regularized vector field into a slow-fast system. This approach
was used for the first time in [1] in the context of planar piecewise
smooth vector fields, and lately by [16] in the 3-dimensional case. The
n-dimensional case was discussed in [17].

This study starts considering a planar piecewise smooth vector field
whose discontinuity set is a smooth curve and linear regularizations.
Without loss of generality, we adopt a coordinate system such that
Z = (X, Y ) is written as

(15) ż = Z(z) =
1 + sgn(x)

2
X(z) +

1− sgn(x)

2
Y (z), z = (x, y)

that is, the discontinuity set is a straight line. A linear regularization
of (15) is the family

(16) ż = Zφ
ε (z) =

1 + φ(x/ε)

2
X(z) +

1− φ(x/ε)

2
Y (z),

where X = (f1, f2), Y = (g1, g2) are applied in z = (x, y). We em-
phasize that in this study the transition function φ is not necessarily
monotonic.

After a directional blow-up of the form x = εx̃, one obtains the
slow-fast system (dropping the tilde in order to simplify the notation)

(17) εẋ =
f1 + g1

2
+φ(x)

(
f1 − g1

2

)
; ẏ =

f2 + g2
2

+φ(x)

(
f2 − g2

2

)
;

where f1, f2, g1, g2 are applied in (εx, y). Denote the critical set of
(17) by C0, which is given by

C0 =

{
(x, y) ;

f1(0, y) + g1(0, y)

2
+ φ(x)

(
f1(0, y)− g1(0, y)

2

)
= 0

}
.

Now, we recall the definitions of sliding and sewing points presented
in [19]. Observe that such notions are local.

Definition 7. A point p ∈ Σ is a sliding point if there is an open set
U ∋ p and a family of smooth manifolds Sε ⊂ U such that

(1) For each ε, Sε is invariant by the regularized system (16);
(2) For each compact subset K ⊂ U , the sequence Sε∩K converges

to Σ ∩K as ε→ 0 according to Hausdorff distance.
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Definition 8. We say that p ∈ Σ is a sewing point if XF (p)·Y F (p) ̸= 0
and there is an open set U ∋ p and local coordinates defined in U such
that

(1) Σ = {x = 0};
(2) For each ε > 0, the horizontal vector field v(x, y) = (1, 0) is a

generator of the regularized system (16) in U .

Intuitively, a point p is a sewing point if the flow of (16) around p is
transversal to Σ.

Concerning linear regularizations, if the transition function is mono-
tonic and the discontinuity set is smooth, the dynamics of the sliding
vector field according to Filippov’s convention is equivalent to the dy-
namics of the slow system associated (see [16, Theorem 1.1]). However,
if we do not consider monotonic transition functions, one can obtain
different dynamics of the (linearly) regularized vector field and con-
sequently different singular perturbation problems, which can lead us
to different definitions of sliding or sewing regions. See [19, 20] and
Theorem A below. Nonlinear regularizations also lead us to different
notions of sewing and sliding. See [18, 20].

Before we state Theorem A, let us introduce some notation. In what
follows, Π : R2 → Σ is the canonical projection Π(x, y) = (0, y).

From the definitions discussed previously, it is clear that different
(linear or nonlinear) regularizations lead to different slow-fast systems,
which gives rise to different sliding or sewing regions. In order to
emphasize the dependency of the regularization adopted, we will call
these sets as the r-Sliding and r-Sewing regions, and we will denote
them as Σs

r and Σw
r respectively. It can be shown that Σs

r ∩ Σw
r = ∅

(see [19, Remark 5]).
Consider the Filippov sliding vector field ZΣ associated to the PSVF

(15). Although in the literature it is only considered the dynamics of

ZΣ in the Filippov sliding or escaping regions, the domain D
(
ZΣ
)
⊂ Σ

of ZΣ may be greater than Σs. In this sense, for our purposes, the

domain D
(
ZΣ
)
of ZΣ is the subset of Σ in which ZΣ is well defined,

and not only the Filippov sliding region Σs.

Theorem A. Consider the PSVF (15) and denote its Filippov sliding

vector field by ZΣ, which domain is the set D
(
ZΣ
)

⊂ Σ. Consider

linear regularization of Z and let φ be a transition function, not nec-
essarily monotonic. Let Π : R2 → Σ be the canonical projection and
x0 ∈ (−1, 1). Then the following hold:
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(a): If φ′(x0) = 0, then the set of points (x0, y) such that

f1(x0, y) + g1(x0, y) + φ(x0)
(
f1(x0, y)− g1(x0, y)

)
= 0

is contained in C0\NH
(
C0

)
. In other words, critical points of

φ gives rise to non normally hyperbolic points of the critical set
C0 of (17).

(b): Suppose that (x0, y0) ∈ NH(C0) and |φ(x0)| > 1. Then

Π
(
NH(C0)

)
∩Σw ̸= ∅. Moreover, Σs ⊊ Σs

r. In other words, if

|φ(x0)| > 1 then the r-sliding region is greater than the classical
Filippov sliding region.

(c): If (0, y0) ∈ Σs
r satisfies f1(0, y0) ̸= g1(0, y0), near such a point

the dynamics in the r-sliding region Σs
r is given by the classical

Filippov sliding vector field ZΣ. In other words, even if we
extend Σs to Σs

r, the dynamics in such a set is given by ZΣ.
In particular, (x0, y0) is an SF-equilibrium point of (17) if, and
only if, (0, y0) is an equilibrium point of ZΣ.

(d): If

Π
(
C0

)
∩

(
Σ\D

(
ZΣ
))

̸= ∅,

then (0, y0) ∈ Π
(
C0

)
∩

(
Σ\D

(
ZΣ
))

is a tangency point for

both vector fields X and Y simultaneously, and the line {y = y0}
is a component of C0. See Figure 5.

Proof. (a): Without loss of generality, we suppose that x0 = 0.
Expanding the first equation of (17) in Taylor series, one obtains

x′ =
1

2

(
(f1 + g1) + φ(0)(f1 − g1)

)
+

1

2

(
φ′(0)(f1 − g1)

)
x+ . . .

A point of the form (0, y, 0) is normally hyperbolic if, and
only if, the following conditions are satisfied:

(18) (f1 + g1) + φ(0)(f1 − g1) = 0, φ′(0)(f1 − g1) ̸= 0.

Therefore, if φ′(0) = 0 (that is, 0 is a critical point of the
transition function), then (0, y, 0) is not normally hyperbolic.

(b): We already know that Σs ⊂ Σs
r (see [21, Theorem 3]). Now,

we prove that Σs
r contains points that do not belong to Σs.

Since (0, y0) ∈ NH(C0) and |φ(0)| > 1, define the constant a
as

a =
φ(0) + 1

φ(0)− 1
⇔ φ(0) =

a+ 1

a− 1
.
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Then the conditions (18) can be rewritten as

(19) g1 = af1, φ′(0) ̸= 0,

where f1 and g1 are applied in (0, y) and a ̸= 1. Note that
the condition a ̸= 1 is naturally satisfied with the assumptions
above. Observe that a < 0 if, and only if, |φ(0)| < 1. Analo-
gously, it can be checked that a > 0 if, and only if, |φ(0)| > 1.

Since |φ(0)| > 1, then a > 0 and points of NH(C0) of the
form (0, y) such that g1(0, y) = af1(0, y) are projected in the
Filippov sewing region Σw by Π.

By [19, Theorem 4.2], we have the inclusion Π
(
NH(C0)

)
⊂

Σs
r. This means that (0, y) ̸∈ Σs is a sliding point, which implies

that Σs ⊊ Σs
r.

(c): Setting ε = 0 in the first equation of (17), we have

φ(x) =
g1(0, y) + f1(0, y)

g1(0, y)− f1(0, y)
.

Combining this expression with the second equation of (17),
we obtain

ẏ =
f2 + g2

2
+

(
g1 + f1
g1 − f1

)(
f2 − g2

2

)

=
(g1 − f1)(f2 + g2) + (g1 + f1)(f2 − g2)

2(g1 − f1)

=
g1(0, y)f2(0, y)− f1(0, y)g2(0, y)

g1(0, y)− f1(0, y)

which is exactly the expression of ZΣ. Therefore, the dynam-
ics in the r-sliding region Σs

r is given by the classical Filippov
sliding vector field ZΣ.

(d): The domain of ZΣ is precisely the set

D
(
ZΣ
)
= {(0, y) ∈ Σ ; g1(0, y) ̸= f1(0, y)}.

If (0, y0) ̸∈ D
(
ZΣ
)

and (0, y0) ∈ Π
(
C0

)
, then g1(0, y0) =

f1(0, y0). From the expression of C0, (0, y0) must be a tangency
point for both X and Y . Moreover, the equation f1(0, y0) = 0
assures that the horizontal line {y = y0} is a component of the
critical manifold C0. See Figure 5.

□

Item (a) of Theorem A assures that, in order to generate SF–singulari-
ties with linear regularizations, we may drop the monotonicity of the
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Figure 5. Level ε = 0 of the regularized vector field. The
semi-cylinder represents the blowing up locus and the flows with
simple arrow and with double arrow represent the slow and the
fast system, respectively. Statement (d) says that, if the projection
Π(C0) on Σ contains a point p = (0, y0) that do not belong to the

domain D
(
ZΣ
)
of the Filippov sliding vector field ZΣ, then p is

a tangency point for both X and Y , that is, g1(p) = f1(p) = 0.
Moreover, the critical manifold C0 (highlighted in green) contains
a line y = y0. It is not possible to define dynamics in Σ through p
using geometric singular perturbation theory.

transition function φ (see also Theorem B). Moreover, φ(0) = 1 im-
plies f1(0, y) = 0, that is, there is a PS-tangency point between X and
Σ. Analogously, φ(0) = −1 implies g1(0, y) = 0, that is, there is a
PS-tangency point between Y and Σ.

Following our notation, [21, Theorem 3] assures that Σs ⊂ Σs
r. How-

ever, in our statement we give a condition such that Σs ⊊ Σs
r. In other

words, if (x0, y0) ∈ NH(C0) and |φ(x0)| > 1 for x0 ∈ (−1, 1), then
there exists a point (0, y0) ∈ Σs

r that does not belong to Σs.
According to item (c), the dynamics in r-sliding region Σs

r is naturally
extended using the classical Filippov sliding vector field. Finally, item

(d) says that Π
(
C0

)
is entirely contained in D

(
ZΣ
)
, unless C0 contains

horizontal lines. This means that we can not define a sliding dynamics

in Σ\
(
D
(
ZΣ
))

using geometric singular perturbation theory.

Now, we are concerned in establishing conditions that both piecewise
smooth vector field and transition function must satisfy in order to
generate SF-singularities.
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Theorem B. Consider the PSVF (15) and let φ be a transition func-
tion, not necessarily monotonic. After linear regularization and di-
rectional blow-up, it is possible to generate normally hyperbolic points,
SF-fold singularities and SF-transcritical singularities. However, it is
not possible to generate SF-pitchfork singularities.

Proof. Let φ be a transition function (not necessarily monotonic) and
Z = (X, Y ) be a PSVF, in which X = (f1, f2) and Y = (g1, g2).

The proof is given by direct computations. The idea is to compare
the coefficients of the Taylor expansion at the origin of the function that
defines the critical set C0 of (17) with the expressions of the normal
forms given in Subsection 2.5. With this procedure, we obtain that such
coefficients must satisfy the following conditions in order to generate
SF-singularities:

(a): Fenichel normal form (normally hyperbolic point):

f1(0, 0)− g1(0, 0) ̸= 0, φ′(0) ̸= 0;(20)

(b): SF-generic Fold:

f1(0, 0)− g1(0, 0) ̸= 0, φ′(0) = 0, φ′′(0) ̸= 0;

φ(0) =
g1(0, 0) + f1(0, 0)

g1(0, 0)− f1(0, 0)
;(

f1,y(0, 0) + g1,y(0, 0)
)
+ φ(0)

(
f1,y(0, 0)− g1,y(0, 0)

)
̸= 0.

(21)

(c): SF-Transcritical singularity:

f1(0, 0)− g1(0, 0) ̸= 0, φ′(0) = 0, φ′′(0) ̸= 0;

φ(0) =
g1(0, 0) + f1(0, 0)

g1(0, 0)− f1(0, 0)
;(

f1,y(0, 0) + g1,y(0, 0)
)
+ φ(0)

(
f1,y(0, 0)− g1,y(0, 0)

)
= 0;∣∣∣∣∣ 1

4

(
(f1 − g1)φ

′′(0)
)

0

0 1
4

(
(1 + φ(0))f1,yy + (1− φ(0))g1,yy

)
∣∣∣∣∣ < 0;

where f1, g1, f1,yy and g1,yy are computed at (0, 0).

(22)

(d): SF-Pitchfork singularity: it is not possible to generate this
kind of SF-singularity, for any transition function φ. Indeed,
such a SF-singularity would lead us to require

f1(0, 0)− g1(0, 0) ̸= 0, φ′(0) = 0, φ′′(0) = 0, φ′′′(0) ̸= 0;(
f1,y(0, 0) + g1,y(0, 0)

)
+ φ(0)

(
f1,y(0, 0)− g1,y(0, 0)

)
= 0;

φ(0) =
g1(0, 0) + f1(0, 0)

g1(0, 0)− f1(0, 0)
, φ′(0)

(
f1,y(0, 0)− g1,y(0, 0)

)
̸= 0;

(23)
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and therefore the transition function would satisfy φ′(0) = 0
and φ′(0) ̸= 0 simultaneously, which is a contradiction.

□

Remark 9. Notice that the SF-fold, SF-transcritical, and SF-pitchfork
singularities are non normally hyperbolic points.

Due to Theorem B, one can start to search for examples of regularized
systems that possess normally hyperbolic points, SF-fold singularities
and SF-transcritical singularities. In the following example we present a
regularized system that has a SF-transcritical singularity at the origin.

Example 10. Consider the normal form of a PS-cusp singularity

(24) Z(x, y) =

 X(x, y) =
(
− y2, 1

)
, if x > 0;

Y (x, y) =
(
1, 1
)
, if x < 0.

Recall that the origin is a PS-cusp singularity and Σs = Σ\{0}. Now,
consider the transition function φ given by

(25) φ(t) =


−1, if t ≤ −1;

−3t5

2
+ t4 + 5t3

2
− 2t2 + 1, if −1 ≤ t ≤ 1;

1, if t ≥ 1;

in which t0 = 0 and t1 =
8
15

are local maximum and minimum, respec-
tively. See Figure 6.

- 1.5 - 1.0 - 0.5 0.5 1.0 1.5

- 1.0

- 0.5

0.5

1.0

Figure 6. Graphic of the monotone transition function φ (left)
and the linear regularized system (26) (right). The critical mani-
fold is highlighted in green.
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After regularization and blow-up, one obtains the slow-fast system

(26)

{
εẋ = 1

4
(x2(x− 1)2(3x+ 4) (y2 + 1)− 4y2) ;

ẏ = 1.

Observe that for x = 0 and x = 8
15
, the critical manifold presents non

normally hyperbolic points. In particular, the origin is a transcritical
singularity.

It is important to note that this example can be generalized as fol-
lows.

Corollary 11. Suppose that the origin is a PS-cusp singularity of the
PSVF (15) and let φ be a non-monotonic transition function such that
φ(0) = 1, φ′(0) = 0, and φ′′(0) ̸= 0. If g1(0, 0)φ

′′(0)f1,yy(0, 0) > 0,
then the regularized system associated with Z has a SF-transcritical
singularity at origin.

Proof. Suppose that the origin is a regular-cusp singularity of the PSVF
(15), that is,

• XF (0, 0) = f1(0, 0) = 0;
• X2F (0, 0) = f1,y(0, 0)f2(0, 0) = 0, thus f1,y(0, 0) = 0;
• X3F (0, 0) = f1,yy(0, 0)(f2(0, 0))

2 ̸= 0, hence f1,yy(0, 0) ̸= 0;
• g1(0, 0) ̸= 0;

where F (x, y) = x and XF is the Lie derivative of F with respect to
the vector field X. Then, we get that

• (f1 − g1)(0, 0) = −g1(0, 0) ̸= 0;
• φ(0) = 1;

•

∣∣∣∣∣ 1
4

(
(f1 − g1)φ

′′(0)
)

0

0 1
4

(
(1 + φ(0))f1,yy + (1− φ(0))g1,yy

)
∣∣∣∣∣ = −g1φ′′(0)f1,yy

8
.

Since φ′(0) = 0 and g1(0, 0)φ
′′(0)f1,yy(0, 0) > 0, then the conditions

obtained in the proof of Theorem B imply that the origin is a SF-
transcritical singularity. □

Using the definition of a PS-fold singularity of the PSVF (15) and
Theorem B we obtain the following result.

Corollary 12. Suppose that the origin is a PS-fold singularity of the
PSVF (15) and let φ be a non-monotonic transition function such that
φ(0) = 1, φ′(0) = 0, and φ′′(0) ̸= 0. Then the regularized system
associated with Z has a SF-fold singularity at origin.

At some point, the reader may think that, after non monotonic linear
regularization and blow-up, it is possible to generate any SF-singularity,
since it is just a matter of a suitable choice of the transition function.



SF NORMAL FORMS AND PSVF’S 19

In general, this is not true. Indeed, Theorem B assures that it does not
exist a transition function that generates a SF-pitchfork singularity.
This leads us to consider nonlinear regularizations.

3.1. Nonlinear regularization and SF-singularities.
In what follows, we present a version of Theorem B for nonlinear

regularization.

Theorem C. Consider the PSVF (15) and let φ be a monotonic transi-

tion function. After φ-nonlinear regularization Z̃(φ(x
ε
), x, y) and direc-

tional blow-up, it is possible to generate normally hyperbolic points, SF-
fold singularities, SF-transcritical singularities and SF-pitchfork singu-
larities.

Proof. Let φ be a monotonic transition function and Z = (X, Y ) be

a PSVF. Consider the φ-nonlinear regularization Z̃(φ(x
ε
), x, y) of Z,

where Z̃ = (Z̃1, Z̃2). The proof is given by direct computations. The
idea is to compare the coefficients of the Taylor expansion of the func-

tion Z̃1(φ(x̃), εx̃, y) near (0, 0, 0) with the expressions of the normal
forms given in Subsection 2.5 and use that φ′(t) ̸= 0 for all t ∈ (−1, 1).
With this procedure, we obtain that such coefficients must satisfy the
following conditions in order to generate SF-singularities:

(a): Fenichel normal form (normally hyperbolic point):

Z̃1
λ(φ(0), 0, 0) ̸= 0;(27)

(b): SF-generic Fold:

Z̃1(φ(0), 0, 0) = 0; Z̃1
λ(φ(0), 0, 0) = 0; Z̃1

λλ(φ(0), 0, 0) ̸= 0;

Z̃1
y (φ(0), 0, 0) ̸= 0; Z̃2(φ(0), 0, 0) ̸= 0.

(28)

(c): SF-Transcritical singularity:

Z̃1(φ(0), 0, 0) = 0; Z̃1
λ(φ(0), 0, 0) = 0; Z̃1

λλ(φ(0), 0, 0) ̸= 0;

Z̃1
y (φ(0), 0, 0) ̸= 0; Z̃2(φ(0), 0, 0) ̸= 0;(
Z̃1
λy(φ(0), 0, 0)

)2
− Z̃1

λλ(φ(0), 0, 0)Z̃
1
yy(φ(0), 0, 0) > 0.

(29)

(d): SF-Pitchfork singularity:

Z̃1(φ(0), 0, 0) = 0; Z̃1
λ(φ(0), 0, 0) = 0; Z̃1

λλ(φ(0), 0, 0) = 0;

Z̃1
y (φ(0), 0, 0) = 0; Z̃1

λλλ(φ(0), 0, 0) ̸= 0; Z̃1
λy(φ(0), 0, 0) ̸= 0;

Z̃2(φ(0), 0, 0) ̸= 0.

(30)

□
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To end this section, we present an example of a nonlinear regularized
system with SF-pitchfork singularity.

Example 13. Let Z = (X, Y ) be a PSVF defined on R2 with F (x, y) =
x, X(x, y) = ((x+1)y+1,−1), Y (x, y) = ((x− 1)y− 1,−1). Consider
the continuous combination of X and Y given by

Z̃(λ, x, y) =
(
(x+ λ)y + λ3,−1

)
.

Assume that the monotonic transition function φ satisfies φ(0) = 0

and φ′(0) ̸= 0 (for example, φ(t) = − t5

2
+ t3

2
+ t, for all t ∈ (−1, 1)).

Thus, after nonlinear regularization and directional blow-up we obtain

(31) ε ˙̂x = (εx̂+ φ(x̂))y + φ(x̂)3; ẏ = −1;

where x̂ = x
ε
. Notice that (31) satisfies conditions (30) and therefore

the origin is a SF-pitchfork singularity. See Figure 7.

- 1.5 - 1.0 - 0.5 0.5 1.0 1.5

- 1.0

- 0.5

0.5

1.0

Figure 7. Graphic of the monotone transition function φ
(left) and the φ-nonlinear regularization (31) of f and g (right).
The critical manifold is highlighted in green.
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