Filtros : "Financiamento FAPESP" "Indexado no MathSciNet" "FFCLRP" Limpar

Filtros



Refine with date range


  • Source: Forum Mathematicum. Unidade: FFCLRP

    Subjects: MATEMÁTICA, ESPAÇOS TOPOLÓGICOS, OPERADORES DIFERENCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BILIATTO, Victor e MOONENS, Laurent e PICON, Tiago Henrique. Hausdorff dimension of removable sets for elliptic and canceling homogeneous differential operators in the class of bounded functions. Forum Mathematicum, 2024Tradução . . Disponível em: https://doi.org/10.1515/forum-2023-0438. Acesso em: 08 out. 2025.
    • APA

      Biliatto, V., Moonens, L., & Picon, T. H. (2024). Hausdorff dimension of removable sets for elliptic and canceling homogeneous differential operators in the class of bounded functions. Forum Mathematicum. doi:10.1515/forum-2023-0438
    • NLM

      Biliatto V, Moonens L, Picon TH. Hausdorff dimension of removable sets for elliptic and canceling homogeneous differential operators in the class of bounded functions [Internet]. Forum Mathematicum. 2024 ;[citado 2025 out. 08 ] Available from: https://doi.org/10.1515/forum-2023-0438
    • Vancouver

      Biliatto V, Moonens L, Picon TH. Hausdorff dimension of removable sets for elliptic and canceling homogeneous differential operators in the class of bounded functions [Internet]. Forum Mathematicum. 2024 ;[citado 2025 out. 08 ] Available from: https://doi.org/10.1515/forum-2023-0438
  • Source: Nonlinear Analysis: Real World Applications. Unidade: FFCLRP

    Subjects: PROBLEMA DE CAUCHY, MATEMÁTICA, ANÁLISE NÃO LINEAR DE ESTRUTURAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel e REISSIG, M. A note to semilinear de Sitter models in 1d with balanced mass and dissipation. Nonlinear Analysis: Real World Applications, v. 71, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.nonrwa.2023.103835. Acesso em: 08 out. 2025.
    • APA

      Ebert, M. R., & Reissig, M. (2023). A note to semilinear de Sitter models in 1d with balanced mass and dissipation. Nonlinear Analysis: Real World Applications, 71. doi:10.1016/j.nonrwa.2023.103835
    • NLM

      Ebert MR, Reissig M. A note to semilinear de Sitter models in 1d with balanced mass and dissipation [Internet]. Nonlinear Analysis: Real World Applications. 2023 ; 71[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.nonrwa.2023.103835
    • Vancouver

      Ebert MR, Reissig M. A note to semilinear de Sitter models in 1d with balanced mass and dissipation [Internet]. Nonlinear Analysis: Real World Applications. 2023 ; 71[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.nonrwa.2023.103835
  • Source: International Journal of Bifurcation and Chaos. Unidade: FFCLRP

    Subjects: SISTEMAS DIFERENCIAIS, POLINÔMIOS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Tiago de e GONÇALVES, Luiz Fernando e LLIBRE, Jaume. On the limit cycles of a class of discontinuous piecewise differential systems formed by two rigid centers governed by odd degree polynomials. International Journal of Bifurcation and Chaos, v. 32, n. 16, 2022Tradução . . Disponível em: https://doi.org/10.1142/S0218127422502455. Acesso em: 08 out. 2025.
    • APA

      Carvalho, T. de, Gonçalves, L. F., & Llibre, J. (2022). On the limit cycles of a class of discontinuous piecewise differential systems formed by two rigid centers governed by odd degree polynomials. International Journal of Bifurcation and Chaos, 32( 16). doi:10.1142/S0218127422502455
    • NLM

      Carvalho T de, Gonçalves LF, Llibre J. On the limit cycles of a class of discontinuous piecewise differential systems formed by two rigid centers governed by odd degree polynomials [Internet]. International Journal of Bifurcation and Chaos. 2022 ; 32( 16):[citado 2025 out. 08 ] Available from: https://doi.org/10.1142/S0218127422502455
    • Vancouver

      Carvalho T de, Gonçalves LF, Llibre J. On the limit cycles of a class of discontinuous piecewise differential systems formed by two rigid centers governed by odd degree polynomials [Internet]. International Journal of Bifurcation and Chaos. 2022 ; 32( 16):[citado 2025 out. 08 ] Available from: https://doi.org/10.1142/S0218127422502455
  • Source: Journal of Differential Equations. Unidades: FFCLRP, ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, SEMIGRUPOS DE OPERADORES LINEARES, ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HERNANDEZ, Eduardo e FERNANDES, Denis e WU, Jianhong. Existence and uniqueness of solutions, well-posedness and global attractor for abstract differential equations with state-dependent delay. Journal of Differential Equations, v. No 2021, p. 753-806, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.09.014. Acesso em: 08 out. 2025.
    • APA

      Hernandez, E., Fernandes, D., & Wu, J. (2021). Existence and uniqueness of solutions, well-posedness and global attractor for abstract differential equations with state-dependent delay. Journal of Differential Equations, No 2021, 753-806. doi:10.1016/j.jde.2021.09.014
    • NLM

      Hernandez E, Fernandes D, Wu J. Existence and uniqueness of solutions, well-posedness and global attractor for abstract differential equations with state-dependent delay [Internet]. Journal of Differential Equations. 2021 ; No 2021 753-806.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2021.09.014
    • Vancouver

      Hernandez E, Fernandes D, Wu J. Existence and uniqueness of solutions, well-posedness and global attractor for abstract differential equations with state-dependent delay [Internet]. Journal of Differential Equations. 2021 ; No 2021 753-806.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2021.09.014
  • Source: Journal of Fixed Point Theory and Applications. Unidades: FFCLRP, ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, PROBLEMAS DE VALORES INICIAIS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HERNANDEZ, Eduardo et al. Existence and uniqueness of solution for neutral differential equations with state-dependent delay. Journal of Fixed Point Theory and Applications, v. No 2021, n. 4, p. 1-14, 2021Tradução . . Disponível em: https://doi.org/10.1007/s11784-021-00901-0. Acesso em: 08 out. 2025.
    • APA

      Hernandez, E., Pierri, M., Fernandes, D., & Lisboa, L. (2021). Existence and uniqueness of solution for neutral differential equations with state-dependent delay. Journal of Fixed Point Theory and Applications, No 2021( 4), 1-14. doi:10.1007/s11784-021-00901-0
    • NLM

      Hernandez E, Pierri M, Fernandes D, Lisboa L. Existence and uniqueness of solution for neutral differential equations with state-dependent delay [Internet]. Journal of Fixed Point Theory and Applications. 2021 ; No 2021( 4): 1-14.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s11784-021-00901-0
    • Vancouver

      Hernandez E, Pierri M, Fernandes D, Lisboa L. Existence and uniqueness of solution for neutral differential equations with state-dependent delay [Internet]. Journal of Fixed Point Theory and Applications. 2021 ; No 2021( 4): 1-14.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s11784-021-00901-0
  • Source: Journal of Dynamics and Differential Equations. Unidade: FFCLRP

    Subjects: PROCESSOS ESTOCÁSTICOS, EQUAÇÕES NÃO LINEARES, EQUAÇÕES DE EVOLUÇÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARRUDA, Lynnyngs K. e CHEMETOV, Nikolai Vasilievich e CIPRIANO, Fernanda. Solvability of the stochastic degasperis-procesi equation. Journal of Dynamics and Differential Equations, 2021Tradução . . Disponível em: https://doi.org/10.1007/s10884-021-10021-5. Acesso em: 08 out. 2025.
    • APA

      Arruda, L. K., Chemetov, N. V., & Cipriano, F. (2021). Solvability of the stochastic degasperis-procesi equation. Journal of Dynamics and Differential Equations. doi:10.1007/s10884-021-10021-5
    • NLM

      Arruda LK, Chemetov NV, Cipriano F. Solvability of the stochastic degasperis-procesi equation [Internet]. Journal of Dynamics and Differential Equations. 2021 ;[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s10884-021-10021-5
    • Vancouver

      Arruda LK, Chemetov NV, Cipriano F. Solvability of the stochastic degasperis-procesi equation [Internet]. Journal of Dynamics and Differential Equations. 2021 ;[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s10884-021-10021-5

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025