Filtros : "Financiamento FAPESP" "Indexado no MathSciNet" "MOTA, MARCOS COUTINHO" Limpar

Filtros



Refine with date range


  • Source: International Journal of Bifurcation and Chaos. Unidade: ICMC

    Subjects: SISTEMAS DIFERENCIAIS, TEORIA DA BIFURCAÇÃO, INVARIANTES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARTÉS, Joan Carles e MOTA, Marcos Coutinho e REZENDE, Alex Carlucci. Quadratic systems possessing an infinite elliptic-saddle or an infinite nilpotent saddle. International Journal of Bifurcation and Chaos, v. 34, n. 11, p. 2430023-1-2430023-43, 2024Tradução . . Disponível em: https://doi.org/10.1142/S0218127424300234. Acesso em: 08 out. 2025.
    • APA

      Artés, J. C., Mota, M. C., & Rezende, A. C. (2024). Quadratic systems possessing an infinite elliptic-saddle or an infinite nilpotent saddle. International Journal of Bifurcation and Chaos, 34( 11), 2430023-1-2430023-43. doi:10.1142/S0218127424300234
    • NLM

      Artés JC, Mota MC, Rezende AC. Quadratic systems possessing an infinite elliptic-saddle or an infinite nilpotent saddle [Internet]. International Journal of Bifurcation and Chaos. 2024 ; 34( 11): 2430023-1-2430023-43.[citado 2025 out. 08 ] Available from: https://doi.org/10.1142/S0218127424300234
    • Vancouver

      Artés JC, Mota MC, Rezende AC. Quadratic systems possessing an infinite elliptic-saddle or an infinite nilpotent saddle [Internet]. International Journal of Bifurcation and Chaos. 2024 ; 34( 11): 2430023-1-2430023-43.[citado 2025 out. 08 ] Available from: https://doi.org/10.1142/S0218127424300234
  • Source: Geometriae Dedicata. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, TEORIA DA BIFURCAÇÃO, CURVAS ALGÉBRICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOTA, Marcos Coutinho e OLIVEIRA, Regilene Delazari dos Santos e TRAVAGLINI, Ana Maria. The interplay among the topological bifurcation diagram, integrability and geometry for the family QSH(D). Geometriae Dedicata, v. 217, n. 6, p. 1-42, 2023Tradução . . Disponível em: https://doi.org/10.1007/s10711-023-00827-6. Acesso em: 08 out. 2025.
    • APA

      Mota, M. C., Oliveira, R. D. dos S., & Travaglini, A. M. (2023). The interplay among the topological bifurcation diagram, integrability and geometry for the family QSH(D). Geometriae Dedicata, 217( 6), 1-42. doi:10.1007/s10711-023-00827-6
    • NLM

      Mota MC, Oliveira RD dos S, Travaglini AM. The interplay among the topological bifurcation diagram, integrability and geometry for the family QSH(D) [Internet]. Geometriae Dedicata. 2023 ; 217( 6): 1-42.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s10711-023-00827-6
    • Vancouver

      Mota MC, Oliveira RD dos S, Travaglini AM. The interplay among the topological bifurcation diagram, integrability and geometry for the family QSH(D) [Internet]. Geometriae Dedicata. 2023 ; 217( 6): 1-42.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s10711-023-00827-6
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, INVARIANTES, TEORIA DA BIFURCAÇÃO, SISTEMAS DIFERENCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOTA, Marcos Coutinho et al. Geometric analysis of quadratic differential systems with invariant ellipses. Topological Methods in Nonlinear Analysis, v. 59, n. 2A, p. 623-685, 2022Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2021.063. Acesso em: 08 out. 2025.
    • APA

      Mota, M. C., Rezende, A. C., Schlomiuk, D., & Vulpe, N. (2022). Geometric analysis of quadratic differential systems with invariant ellipses. Topological Methods in Nonlinear Analysis, 59( 2A), 623-685. doi:10.12775/TMNA.2021.063
    • NLM

      Mota MC, Rezende AC, Schlomiuk D, Vulpe N. Geometric analysis of quadratic differential systems with invariant ellipses [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 59( 2A): 623-685.[citado 2025 out. 08 ] Available from: https://doi.org/10.12775/TMNA.2021.063
    • Vancouver

      Mota MC, Rezende AC, Schlomiuk D, Vulpe N. Geometric analysis of quadratic differential systems with invariant ellipses [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 59( 2A): 623-685.[citado 2025 out. 08 ] Available from: https://doi.org/10.12775/TMNA.2021.063
  • Source: Electronic Journal of Qualitative Theory of Differential Equations. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, ANÁLISE GLOBAL

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARTÉS, Joan Carles e MOTA, Marcos Coutinho e REZENDE, Alex Carlucci. Structurally unstable quadratic vector fields of codimension two: families possessing a finite saddle-node and an infinite saddle-node. Electronic Journal of Qualitative Theory of Differential Equations, v. 2021, n. 35, p. 1-89, 2021Tradução . . Disponível em: https://doi.org/10.14232/ejqtde.2021.1.35. Acesso em: 08 out. 2025.
    • APA

      Artés, J. C., Mota, M. C., & Rezende, A. C. (2021). Structurally unstable quadratic vector fields of codimension two: families possessing a finite saddle-node and an infinite saddle-node. Electronic Journal of Qualitative Theory of Differential Equations, 2021( 35), 1-89. doi:10.14232/ejqtde.2021.1.35
    • NLM

      Artés JC, Mota MC, Rezende AC. Structurally unstable quadratic vector fields of codimension two: families possessing a finite saddle-node and an infinite saddle-node [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2021 ; 2021( 35): 1-89.[citado 2025 out. 08 ] Available from: https://doi.org/10.14232/ejqtde.2021.1.35
    • Vancouver

      Artés JC, Mota MC, Rezende AC. Structurally unstable quadratic vector fields of codimension two: families possessing a finite saddle-node and an infinite saddle-node [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2021 ; 2021( 35): 1-89.[citado 2025 out. 08 ] Available from: https://doi.org/10.14232/ejqtde.2021.1.35

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025