Filtros : "Financiado pela NSFC" "ICMC-SMA" Limpar

Filtros



Refine with date range


  • Source: European Journal of Applied Mathematics. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, SISTEMAS DINÂMICOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLIBRE, Jaume e OLIVEIRA, Regilene Delazari dos Santos e ZHAO, Yulin. On the birth and death of algebraic limit cycles in quadratic differential systems. European Journal of Applied Mathematics, v. 32, n. 2, p. 317-336, 2021Tradução . . Disponível em: https://doi.org/10.1017/S0956792520000145. Acesso em: 18 nov. 2024.
    • APA

      Llibre, J., Oliveira, R. D. dos S., & Zhao, Y. (2021). On the birth and death of algebraic limit cycles in quadratic differential systems. European Journal of Applied Mathematics, 32( 2), 317-336. doi:10.1017/S0956792520000145
    • NLM

      Llibre J, Oliveira RD dos S, Zhao Y. On the birth and death of algebraic limit cycles in quadratic differential systems [Internet]. European Journal of Applied Mathematics. 2021 ; 32( 2): 317-336.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1017/S0956792520000145
    • Vancouver

      Llibre J, Oliveira RD dos S, Zhao Y. On the birth and death of algebraic limit cycles in quadratic differential systems [Internet]. European Journal of Applied Mathematics. 2021 ; 32( 2): 317-336.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1017/S0956792520000145
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES, SISTEMAS DISSIPATIVO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CUI, Hongyong et al. Smoothing and finite-dimensionality of uniform attractors in Banach spaces. Journal of Differential Equations, v. 285, p. 383-428, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.03.013. Acesso em: 18 nov. 2024.
    • APA

      Cui, H., Carvalho, A. N. de, Cunha, A. C., & Langa, J. A. (2021). Smoothing and finite-dimensionality of uniform attractors in Banach spaces. Journal of Differential Equations, 285, 383-428. doi:10.1016/j.jde.2021.03.013
    • NLM

      Cui H, Carvalho AN de, Cunha AC, Langa JA. Smoothing and finite-dimensionality of uniform attractors in Banach spaces [Internet]. Journal of Differential Equations. 2021 ; 285 383-428.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jde.2021.03.013
    • Vancouver

      Cui H, Carvalho AN de, Cunha AC, Langa JA. Smoothing and finite-dimensionality of uniform attractors in Banach spaces [Internet]. Journal of Differential Equations. 2021 ; 285 383-428.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jde.2021.03.013
  • Source: Communications on Pure and Applied Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LI, Yanan et al. A non-autonomous bifurcation problem for a non-local scalar one-dimensional parabolic equation. Communications on Pure and Applied Analysis, v. No 2020, n. 11, p. 5181-5196, 2020Tradução . . Disponível em: https://doi.org/10.3934/cpaa.2020232. Acesso em: 18 nov. 2024.
    • APA

      Li, Y., Carvalho, A. N. de, Luna, T. L. M., & Moreira, E. M. (2020). A non-autonomous bifurcation problem for a non-local scalar one-dimensional parabolic equation. Communications on Pure and Applied Analysis, No 2020( 11), 5181-5196. doi:10.3934/cpaa.2020232
    • NLM

      Li Y, Carvalho AN de, Luna TLM, Moreira EM. A non-autonomous bifurcation problem for a non-local scalar one-dimensional parabolic equation [Internet]. Communications on Pure and Applied Analysis. 2020 ; No 2020( 11): 5181-5196.[citado 2024 nov. 18 ] Available from: https://doi.org/10.3934/cpaa.2020232
    • Vancouver

      Li Y, Carvalho AN de, Luna TLM, Moreira EM. A non-autonomous bifurcation problem for a non-local scalar one-dimensional parabolic equation [Internet]. Communications on Pure and Applied Analysis. 2020 ; No 2020( 11): 5181-5196.[citado 2024 nov. 18 ] Available from: https://doi.org/10.3934/cpaa.2020232
  • Source: Nonlinear Analysis : Real World Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DE NAVIER-STOKES, ATRATORES, FRACTAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      YANG, Xin-Guang et al. Pullback dynamics of 3D Navier-Stokes equations with nonlinear viscosity. Nonlinear Analysis : Real World Applications, v. 48, p. 337-361, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.nonrwa.2019.01.013. Acesso em: 18 nov. 2024.
    • APA

      Yang, X. -G., Feng, B., Wang, S., Lu, Y., & Ma, T. F. (2019). Pullback dynamics of 3D Navier-Stokes equations with nonlinear viscosity. Nonlinear Analysis : Real World Applications, 48, 337-361. doi:10.1016/j.nonrwa.2019.01.013
    • NLM

      Yang X-G, Feng B, Wang S, Lu Y, Ma TF. Pullback dynamics of 3D Navier-Stokes equations with nonlinear viscosity [Internet]. Nonlinear Analysis : Real World Applications. 2019 ; 48 337-361.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.nonrwa.2019.01.013
    • Vancouver

      Yang X-G, Feng B, Wang S, Lu Y, Ma TF. Pullback dynamics of 3D Navier-Stokes equations with nonlinear viscosity [Internet]. Nonlinear Analysis : Real World Applications. 2019 ; 48 337-361.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.nonrwa.2019.01.013

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024