On the birth and death of algebraic limit cycles in quadratic differential systems (2021)
- Authors:
- Autor USP: OLIVEIRA, REGILENE DELAZARI DOS SANTOS - ICMC
- Unidade: ICMC
- DOI: 10.1017/S0956792520000145
- Subjects: TEORIA QUALITATIVA; SISTEMAS DINÂMICOS
- Keywords: Algebraic limit cycles; Hopf bifurcation; homoclinic orbits; heteroclinic orbits; quadratic polynomial differential systems
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: European Journal of Applied Mathematics
- ISSN: 0956-7925
- Volume/Número/Paginação/Ano: v. 32, n. 2, p. 317-336, Apr. 2021
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
LLIBRE, Jaume e OLIVEIRA, Regilene Delazari dos Santos e ZHAO, Yulin. On the birth and death of algebraic limit cycles in quadratic differential systems. European Journal of Applied Mathematics, v. 32, n. 2, p. 317-336, 2021Tradução . . Disponível em: https://doi.org/10.1017/S0956792520000145. Acesso em: 27 jan. 2026. -
APA
Llibre, J., Oliveira, R. D. dos S., & Zhao, Y. (2021). On the birth and death of algebraic limit cycles in quadratic differential systems. European Journal of Applied Mathematics, 32( 2), 317-336. doi:10.1017/S0956792520000145 -
NLM
Llibre J, Oliveira RD dos S, Zhao Y. On the birth and death of algebraic limit cycles in quadratic differential systems [Internet]. European Journal of Applied Mathematics. 2021 ; 32( 2): 317-336.[citado 2026 jan. 27 ] Available from: https://doi.org/10.1017/S0956792520000145 -
Vancouver
Llibre J, Oliveira RD dos S, Zhao Y. On the birth and death of algebraic limit cycles in quadratic differential systems [Internet]. European Journal of Applied Mathematics. 2021 ; 32( 2): 317-336.[citado 2026 jan. 27 ] Available from: https://doi.org/10.1017/S0956792520000145 - Phase portraits of quadratic polynomial vector fields having a rational first integral of degree 3
- The center problem for a 1: -4 resonant quadratic system
- Local integrability and linearizability of a (1 : -1 : -1) resonant quadratic system
- Quadratic systems with invariant straight lines of total multiplicity two having Darboux invariants
- The geometry of quadratic polynomial differential systems with a finite and an infinite Saddle-Node (A, B)
- Cyclicity of some analytic maps
- Números primos: infinitude e distribuição
- On the integrability and the zero-Hopf bifurcation of a Chen-Wang differential system
- On pairs of polynomial planar foliations
- Chaotic behavior of a generalized Sprott E differential system
Informações sobre o DOI: 10.1017/S0956792520000145 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 2998595.pdf | |||
| 2998595_post.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
