Filtros : "Hashimoto, Elizabeth M" "Estados Unidos" Limpar

Filtros



Refine with date range


  • Source: Journal of Statistical Computation and Simulation. Unidade: ESALQ

    Subjects: REGRESSÃO LINEAR, ÓLEOS VEGETAIS, COPAÍBA, RESINAS VEGETAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HASHIMOTO, Elizabeth M et al. Zero-spiked regression models generated by gamma random variables with application in the resin oil production. Journal of Statistical Computation and Simulation, v. 89, n. 1, p. 52-70, 2019Tradução . . Disponível em: https://doi.org/10.1080/00949655.2018.1534116. Acesso em: 17 nov. 2024.
    • APA

      Hashimoto, E. M., Ortega, E. M. M., Cordeiro, G. M., Cancho, V. G., & Klauberg, C. (2019). Zero-spiked regression models generated by gamma random variables with application in the resin oil production. Journal of Statistical Computation and Simulation, 89( 1), 52-70. doi:10.1080/00949655.2018.1534116
    • NLM

      Hashimoto EM, Ortega EMM, Cordeiro GM, Cancho VG, Klauberg C. Zero-spiked regression models generated by gamma random variables with application in the resin oil production [Internet]. Journal of Statistical Computation and Simulation. 2019 ; 89( 1): 52-70.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1080/00949655.2018.1534116
    • Vancouver

      Hashimoto EM, Ortega EMM, Cordeiro GM, Cancho VG, Klauberg C. Zero-spiked regression models generated by gamma random variables with application in the resin oil production [Internet]. Journal of Statistical Computation and Simulation. 2019 ; 89( 1): 52-70.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1080/00949655.2018.1534116
  • Source: Journal of Statistical Theory and Applications. Unidade: ESALQ

    Subjects: DADOS CENSURADOS, DISTRIBUIÇÃO LOGÍSTICA, MODELOS MATEMÁTICOS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HASHIMOTO, Elizabeth M et al. The Log-gamma-logistic regression model: estimation, sensibility and residual analysis. Journal of Statistical Theory and Applications, v. 16, n. 4, p. 547-564, 2017Tradução . . Disponível em: https://www.atlantis-press.com/journals/jsta/25887941. Acesso em: 17 nov. 2024.
    • APA

      Hashimoto, E. M., Edwin Moises Marcos Ortega,, Cordeiro, G. M., & Hamedani, G. G. (2017). The Log-gamma-logistic regression model: estimation, sensibility and residual analysis. Journal of Statistical Theory and Applications, 16( 4), 547-564. Recuperado de https://www.atlantis-press.com/journals/jsta/25887941
    • NLM

      Hashimoto EM, Edwin Moises Marcos Ortega, Cordeiro GM, Hamedani GG. The Log-gamma-logistic regression model: estimation, sensibility and residual analysis [Internet]. Journal of Statistical Theory and Applications. 2017 ; 16( 4): 547-564.[citado 2024 nov. 17 ] Available from: https://www.atlantis-press.com/journals/jsta/25887941
    • Vancouver

      Hashimoto EM, Edwin Moises Marcos Ortega, Cordeiro GM, Hamedani GG. The Log-gamma-logistic regression model: estimation, sensibility and residual analysis [Internet]. Journal of Statistical Theory and Applications. 2017 ; 16( 4): 547-564.[citado 2024 nov. 17 ] Available from: https://www.atlantis-press.com/journals/jsta/25887941
  • Source: Journal of Statistical Theory and Applications. Unidade: ESALQ

    Subjects: DADOS CENSURADOS, DISTRIBUIÇÃO LOGÍSTICA, MODELOS MATEMÁTICOS, VEROSSIMILHANÇA

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HASHIMOTO, Elizabeth M et al. The Log-gamma-logistic regression model: estimation, sensibility and residual analysis. Journal of Statistical Theory and Applications, v. 16, n. 4, p. 547–564, 2017Tradução . . Disponível em: https://doi.org/10.2991/jsta.2017.16.4.9. Acesso em: 17 nov. 2024.
    • APA

      Hashimoto, E. M., Ortega, E. M. M., Cordeiro, G. M., & Hamedani, G. G. (2017). The Log-gamma-logistic regression model: estimation, sensibility and residual analysis. Journal of Statistical Theory and Applications, 16( 4), 547–564. doi:10.2991/jsta.2017.16.4.9
    • NLM

      Hashimoto EM, Ortega EMM, Cordeiro GM, Hamedani GG. The Log-gamma-logistic regression model: estimation, sensibility and residual analysis [Internet]. Journal of Statistical Theory and Applications. 2017 ; 16( 4): 547–564.[citado 2024 nov. 17 ] Available from: https://doi.org/10.2991/jsta.2017.16.4.9
    • Vancouver

      Hashimoto EM, Ortega EMM, Cordeiro GM, Hamedani GG. The Log-gamma-logistic regression model: estimation, sensibility and residual analysis [Internet]. Journal of Statistical Theory and Applications. 2017 ; 16( 4): 547–564.[citado 2024 nov. 17 ] Available from: https://doi.org/10.2991/jsta.2017.16.4.9
  • Source: International Journal of Statistics and Probability. Unidade: ESALQ

    Subjects: DADOS CENSURADOS, DISTRIBUIÇÕES (PROBABILIDADE), MODELOS MATEMÁTICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HASHIMOTO, Elizabeth M et al. New flexible regression models generated by gamma random variables with censored data. International Journal of Statistics and Probability, v. 5, n. 3, p. 9-31, 2016Tradução . . Disponível em: https://doi.org/10.5539/ijsp.v5n3p9. Acesso em: 17 nov. 2024.
    • APA

      Hashimoto, E. M., Cordeiro, G. M., Ortega, E. M. M., & Hamedani, G. G. (2016). New flexible regression models generated by gamma random variables with censored data. International Journal of Statistics and Probability, 5( 3), 9-31. doi:10.5539/ijsp.v5n3p9
    • NLM

      Hashimoto EM, Cordeiro GM, Ortega EMM, Hamedani GG. New flexible regression models generated by gamma random variables with censored data [Internet]. International Journal of Statistics and Probability. 2016 ; 5( 3): 9-31.[citado 2024 nov. 17 ] Available from: https://doi.org/10.5539/ijsp.v5n3p9
    • Vancouver

      Hashimoto EM, Cordeiro GM, Ortega EMM, Hamedani GG. New flexible regression models generated by gamma random variables with censored data [Internet]. International Journal of Statistics and Probability. 2016 ; 5( 3): 9-31.[citado 2024 nov. 17 ] Available from: https://doi.org/10.5539/ijsp.v5n3p9

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024