Filtros : "Indexado no Zentralblatt MATH" "Journal of Fixed Point Theory and Applications" Removido: "Brasil" Limpar

Filtros



Refine with date range


  • Source: Journal of Fixed Point Theory and Applications. Unidades: FFCLRP, ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, PROBLEMAS DE VALORES INICIAIS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HERNANDEZ, Eduardo et al. Existence and uniqueness of solution for neutral differential equations with state-dependent delay. Journal of Fixed Point Theory and Applications, v. No 2021, n. 4, p. 1-14, 2021Tradução . . Disponível em: https://doi.org/10.1007/s11784-021-00901-0. Acesso em: 31 out. 2024.
    • APA

      Hernandez, E., Pierri, M., Fernandes, D., & Lisboa, L. (2021). Existence and uniqueness of solution for neutral differential equations with state-dependent delay. Journal of Fixed Point Theory and Applications, No 2021( 4), 1-14. doi:10.1007/s11784-021-00901-0
    • NLM

      Hernandez E, Pierri M, Fernandes D, Lisboa L. Existence and uniqueness of solution for neutral differential equations with state-dependent delay [Internet]. Journal of Fixed Point Theory and Applications. 2021 ; No 2021( 4): 1-14.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s11784-021-00901-0
    • Vancouver

      Hernandez E, Pierri M, Fernandes D, Lisboa L. Existence and uniqueness of solution for neutral differential equations with state-dependent delay [Internet]. Journal of Fixed Point Theory and Applications. 2021 ; No 2021( 4): 1-14.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s11784-021-00901-0
  • Source: Journal of Fixed Point Theory and Applications. Unidade: ICMC

    Subjects: TOPOLOGIA ALGÉBRICA, COMPLEXOS CELULARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARZANTOWICZ, Waclaw e MATTOS, Denise de e SANTOS, Edivaldo L. dos. Bourgin–Yang versions of the Borsuk–Ulam theorem for p-toral groups. Journal of Fixed Point Theory and Applications, v. 19, n. 2, p. 1427-1437, 2017Tradução . . Disponível em: https://doi.org/10.1007/s11784-016-0315-y. Acesso em: 31 out. 2024.
    • APA

      Marzantowicz, W., Mattos, D. de, & Santos, E. L. dos. (2017). Bourgin–Yang versions of the Borsuk–Ulam theorem for p-toral groups. Journal of Fixed Point Theory and Applications, 19( 2), 1427-1437. doi:10.1007/s11784-016-0315-y
    • NLM

      Marzantowicz W, Mattos D de, Santos EL dos. Bourgin–Yang versions of the Borsuk–Ulam theorem for p-toral groups [Internet]. Journal of Fixed Point Theory and Applications. 2017 ; 19( 2): 1427-1437.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s11784-016-0315-y
    • Vancouver

      Marzantowicz W, Mattos D de, Santos EL dos. Bourgin–Yang versions of the Borsuk–Ulam theorem for p-toral groups [Internet]. Journal of Fixed Point Theory and Applications. 2017 ; 19( 2): 1427-1437.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s11784-016-0315-y
  • Source: Journal of Fixed Point Theory and Applications. Unidade: ICMC

    Subjects: TOPOLOGIA ALGÉBRICA, SINGULARIDADES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CORDOVA, Norbil e MATTOS, Denise de e SANTOS, Edivaldo L. dos. Degree of equivariant maps between generalized G-manifolds. Journal of Fixed Point Theory and Applications, v. 13, n. 1, p. 163-173, 2013Tradução . . Disponível em: https://doi.org/10.1007/s11784-013-0103-x. Acesso em: 31 out. 2024.
    • APA

      Cordova, N., Mattos, D. de, & Santos, E. L. dos. (2013). Degree of equivariant maps between generalized G-manifolds. Journal of Fixed Point Theory and Applications, 13( 1), 163-173. doi:10.1007/s11784-013-0103-x
    • NLM

      Cordova N, Mattos D de, Santos EL dos. Degree of equivariant maps between generalized G-manifolds [Internet]. Journal of Fixed Point Theory and Applications. 2013 ; 13( 1): 163-173.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s11784-013-0103-x
    • Vancouver

      Cordova N, Mattos D de, Santos EL dos. Degree of equivariant maps between generalized G-manifolds [Internet]. Journal of Fixed Point Theory and Applications. 2013 ; 13( 1): 163-173.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s11784-013-0103-x
  • Source: Journal of Fixed Point Theory and Applications. Unidades: IME, ICMC

    Subjects: TOPOLOGIA-GEOMETRIA, HOMOTOPIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e SPREAFICO, Mauro Flávio e MANZOLI NETO, Oziride. The Borsuk-Ulam Theorem for homotopy spherical space forms. Journal of Fixed Point Theory and Applications, v. 9, n. 2, p. 285-294, 2011Tradução . . Disponível em: https://doi.org/10.1007/s11784-011-0049-9. Acesso em: 31 out. 2024.
    • APA

      Gonçalves, D. L., Spreafico, M. F., & Manzoli Neto, O. (2011). The Borsuk-Ulam Theorem for homotopy spherical space forms. Journal of Fixed Point Theory and Applications, 9( 2), 285-294. doi:10.1007/s11784-011-0049-9
    • NLM

      Gonçalves DL, Spreafico MF, Manzoli Neto O. The Borsuk-Ulam Theorem for homotopy spherical space forms [Internet]. Journal of Fixed Point Theory and Applications. 2011 ; 9( 2): 285-294.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s11784-011-0049-9
    • Vancouver

      Gonçalves DL, Spreafico MF, Manzoli Neto O. The Borsuk-Ulam Theorem for homotopy spherical space forms [Internet]. Journal of Fixed Point Theory and Applications. 2011 ; 9( 2): 285-294.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s11784-011-0049-9

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024