Operator-valued stochastic differential equations in the context of Kurzweil-like equations (2023)
Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC
Subjects: EQUAÇÕES DIFERENCIAIS ESTOCÁSTICAS, INTEGRAL DE HENSTOCK, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, OPERADORES
ABNT
BONOTTO, Everaldo de Mello et al. Operator-valued stochastic differential equations in the context of Kurzweil-like equations. Journal of Mathematical Analysis and Applications, v. No 2023, n. 2, p. 1-27, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2023.127464. Acesso em: 31 out. 2024.APA
Bonotto, E. de M., Collegari, R., Federson, M., & Gill, T. (2023). Operator-valued stochastic differential equations in the context of Kurzweil-like equations. Journal of Mathematical Analysis and Applications, No 2023( 2), 1-27. doi:10.1016/j.jmaa.2023.127464NLM
Bonotto E de M, Collegari R, Federson M, Gill T. Operator-valued stochastic differential equations in the context of Kurzweil-like equations [Internet]. Journal of Mathematical Analysis and Applications. 2023 ; No 2023( 2): 1-27.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.jmaa.2023.127464Vancouver
Bonotto E de M, Collegari R, Federson M, Gill T. Operator-valued stochastic differential equations in the context of Kurzweil-like equations [Internet]. Journal of Mathematical Analysis and Applications. 2023 ; No 2023( 2): 1-27.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.jmaa.2023.127464