Filtros : "Indexado no Zentralblatt MATH" "2020" Removido: "Inglaterra" Limpar

Filtros



Refine with date range


  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: ESPAÇOS FIBRADOS, ROBÓTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ZAPATA, Cesar Augusto Ipanaque e GONZÁLEZ, Jesús. Sectional category and the fixed point property. Topological Methods in Nonlinear Analysis, v. 56, n. 2, p. 559-578, 2020Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2020.033. Acesso em: 31 out. 2024.
    • APA

      Zapata, C. A. I., & González, J. (2020). Sectional category and the fixed point property. Topological Methods in Nonlinear Analysis, 56( 2), 559-578. doi:10.12775/TMNA.2020.033
    • NLM

      Zapata CAI, González J. Sectional category and the fixed point property [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 56( 2): 559-578.[citado 2024 out. 31 ] Available from: https://doi.org/10.12775/TMNA.2020.033
    • Vancouver

      Zapata CAI, González J. Sectional category and the fixed point property [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 56( 2): 559-578.[citado 2024 out. 31 ] Available from: https://doi.org/10.12775/TMNA.2020.033
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS FUNCIONAIS COM RETARDAMENTO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEDERSON, Marcia et al. A delay differential equation with an impulsive self-support condition. Journal of Dynamics and Differential Equations, v. 32, n. 2, p. 605-614, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10884-019-09750-5. Acesso em: 31 out. 2024.
    • APA

      Federson, M., Györi, I., Mesquita, J. G., & Taboas, P. Z. (2020). A delay differential equation with an impulsive self-support condition. Journal of Dynamics and Differential Equations, 32( 2), 605-614. doi:10.1007/s10884-019-09750-5
    • NLM

      Federson M, Györi I, Mesquita JG, Taboas PZ. A delay differential equation with an impulsive self-support condition [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 2): 605-614.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s10884-019-09750-5
    • Vancouver

      Federson M, Györi I, Mesquita JG, Taboas PZ. A delay differential equation with an impulsive self-support condition [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 2): 605-614.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s10884-019-09750-5
  • Source: Communications in Statistics - Theory and Methods. Unidade: ICMC

    Subjects: MÉTODOS DE REAMOSTRAGEM, DISTRIBUIÇÕES (PROBABILIDADE), ANÁLISE MULTIVARIADA, DADOS QUALITATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, Paulo Henrique e LOUZADA, Francisco. Extending the inference function for augmented margins method to implement trivariate Clayton copula-based SUR Tobit models. Communications in Statistics - Theory and Methods, v. 49, n. 6, p. 1375-1401, 2020Tradução . . Disponível em: https://doi.org/10.1080/03610926.2018.1563167. Acesso em: 31 out. 2024.
    • APA

      Ferreira, P. H., & Louzada, F. (2020). Extending the inference function for augmented margins method to implement trivariate Clayton copula-based SUR Tobit models. Communications in Statistics - Theory and Methods, 49( 6), 1375-1401. doi:10.1080/03610926.2018.1563167
    • NLM

      Ferreira PH, Louzada F. Extending the inference function for augmented margins method to implement trivariate Clayton copula-based SUR Tobit models [Internet]. Communications in Statistics - Theory and Methods. 2020 ; 49( 6): 1375-1401.[citado 2024 out. 31 ] Available from: https://doi.org/10.1080/03610926.2018.1563167
    • Vancouver

      Ferreira PH, Louzada F. Extending the inference function for augmented margins method to implement trivariate Clayton copula-based SUR Tobit models [Internet]. Communications in Statistics - Theory and Methods. 2020 ; 49( 6): 1375-1401.[citado 2024 out. 31 ] Available from: https://doi.org/10.1080/03610926.2018.1563167
  • Source: Finite Fields and their Applications. Unidade: ICMC

    Subjects: CURVAS ALGÉBRICAS, TEORIA DE GALOIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORGES, Herivelto e FUKASAWA, Satoru. Galois points for double-Frobenius nonclassical curves. Finite Fields and their Applications, v. 61, n. Ja 2020, p. 1-8, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.ffa.2019.101579. Acesso em: 31 out. 2024.
    • APA

      Borges, H., & Fukasawa, S. (2020). Galois points for double-Frobenius nonclassical curves. Finite Fields and their Applications, 61( Ja 2020), 1-8. doi:10.1016/j.ffa.2019.101579
    • NLM

      Borges H, Fukasawa S. Galois points for double-Frobenius nonclassical curves [Internet]. Finite Fields and their Applications. 2020 ; 61( Ja 2020): 1-8.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.ffa.2019.101579
    • Vancouver

      Borges H, Fukasawa S. Galois points for double-Frobenius nonclassical curves [Internet]. Finite Fields and their Applications. 2020 ; 61( Ja 2020): 1-8.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.ffa.2019.101579
  • Source: Israel Journal of Mathematics. Unidade: ICMC

    Subjects: ESPAÇOS DE ORLICZ, ESPAÇOS DE INTERPOLAÇÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CORRÊA, Willian Hans Goes. Complex interpolation of families of Orlicz sequence spaces. Israel Journal of Mathematics, v. 240, n. 2, p. 603-624, 2020Tradução . . Disponível em: https://doi.org/10.1007/s11856-020-2068-y. Acesso em: 31 out. 2024.
    • APA

      Corrêa, W. H. G. (2020). Complex interpolation of families of Orlicz sequence spaces. Israel Journal of Mathematics, 240( 2), 603-624. doi:10.1007/s11856-020-2068-y
    • NLM

      Corrêa WHG. Complex interpolation of families of Orlicz sequence spaces [Internet]. Israel Journal of Mathematics. 2020 ; 240( 2): 603-624.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s11856-020-2068-y
    • Vancouver

      Corrêa WHG. Complex interpolation of families of Orlicz sequence spaces [Internet]. Israel Journal of Mathematics. 2020 ; 240( 2): 603-624.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s11856-020-2068-y
  • Source: Journal of Geometric Analysis. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, ATRATORES, INVARIANTES, ESTABILIDADE DE SISTEMAS, CONTROLABILIDADE, TEORIA DAS SINGULARIDADES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e KALITA, Piotr. On attractors of generalized semiflows with impulses. Journal of Geometric Analysis, v. 30, p. 1412–1449, 2020Tradução . . Disponível em: https://doi.org/10.1007/s12220-019-00143-0. Acesso em: 31 out. 2024.
    • APA

      Bonotto, E. de M., & Kalita, P. (2020). On attractors of generalized semiflows with impulses. Journal of Geometric Analysis, 30, 1412–1449. doi:10.1007/s12220-019-00143-0
    • NLM

      Bonotto E de M, Kalita P. On attractors of generalized semiflows with impulses [Internet]. Journal of Geometric Analysis. 2020 ; 30 1412–1449.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s12220-019-00143-0
    • Vancouver

      Bonotto E de M, Kalita P. On attractors of generalized semiflows with impulses [Internet]. Journal of Geometric Analysis. 2020 ; 30 1412–1449.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s12220-019-00143-0
  • Source: Algebras and Representation Theory. Unidade: ICMC

    Subjects: ÁLGEBRA DIFERENCIAL, ANÉIS E ÁLGEBRAS COMUTATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARO-TUESTA, Napoleón e LEVCOVITZ, Daniel. Module structure of certain rings of differential operators. Algebras and Representation Theory, v. 23, n. 4, p. 1637-1657, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10468-019-09905-4. Acesso em: 31 out. 2024.
    • APA

      Caro-Tuesta, N., & Levcovitz, D. (2020). Module structure of certain rings of differential operators. Algebras and Representation Theory, 23( 4), 1637-1657. doi:10.1007/s10468-019-09905-4
    • NLM

      Caro-Tuesta N, Levcovitz D. Module structure of certain rings of differential operators [Internet]. Algebras and Representation Theory. 2020 ; 23( 4): 1637-1657.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s10468-019-09905-4
    • Vancouver

      Caro-Tuesta N, Levcovitz D. Module structure of certain rings of differential operators [Internet]. Algebras and Representation Theory. 2020 ; 23( 4): 1637-1657.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s10468-019-09905-4
  • Source: Journal of Pure and Applied Algebra. Unidade: ICMC

    Subjects: TEORIA DOS NÚMEROS, GEOMETRIA DIOFANTINA, GEOMETRIA FINITA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORGES, Herivelto e COUTINHO, Mariana de Almeida Nery. On some generalized Fermat curves and chords of an affinely regular polygon inscribed in a hyperbola. Journal of Pure and Applied Algebra, v. 224, n. Ja 2020, p. 239-249, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.jpaa.2019.05.005. Acesso em: 31 out. 2024.
    • APA

      Borges, H., & Coutinho, M. de A. N. (2020). On some generalized Fermat curves and chords of an affinely regular polygon inscribed in a hyperbola. Journal of Pure and Applied Algebra, 224( Ja 2020), 239-249. doi:10.1016/j.jpaa.2019.05.005
    • NLM

      Borges H, Coutinho M de AN. On some generalized Fermat curves and chords of an affinely regular polygon inscribed in a hyperbola [Internet]. Journal of Pure and Applied Algebra. 2020 ; 224( Ja 2020): 239-249.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.jpaa.2019.05.005
    • Vancouver

      Borges H, Coutinho M de AN. On some generalized Fermat curves and chords of an affinely regular polygon inscribed in a hyperbola [Internet]. Journal of Pure and Applied Algebra. 2020 ; 224( Ja 2020): 239-249.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.jpaa.2019.05.005
  • Source: Communications in Mathematical Physics. Unidade: ICMC

    Subjects: PROCESSOS ALEATÓRIOS, ANÁLISE ASSINTÓTICA, MATRIZES, FÍSICA MATEMÁTICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Guilherme Lima Ferreira da e ZHANG, Lun. Large n limit for the product of two coupled random matrices. Communications in Mathematical Physics, v. 377, n. 3, p. 2345-2427, 2020Tradução . . Disponível em: https://doi.org/10.1007/s00220-020-03763-8. Acesso em: 31 out. 2024.
    • APA

      Silva, G. L. F. da, & Zhang, L. (2020). Large n limit for the product of two coupled random matrices. Communications in Mathematical Physics, 377( 3), 2345-2427. doi:10.1007/s00220-020-03763-8
    • NLM

      Silva GLF da, Zhang L. Large n limit for the product of two coupled random matrices [Internet]. Communications in Mathematical Physics. 2020 ; 377( 3): 2345-2427.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00220-020-03763-8
    • Vancouver

      Silva GLF da, Zhang L. Large n limit for the product of two coupled random matrices [Internet]. Communications in Mathematical Physics. 2020 ; 377( 3): 2345-2427.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00220-020-03763-8
  • Source: Journal of Approximation Theory. Unidade: ICMC

    Subjects: ANÁLISE ASSINTÓTICA, POLINÔMIOS ORTOGONAIS

    Versão AceitaAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CELSUS, Andrew F. e SILVA, Guilherme Lima Ferreira da. Supercritical regime for the kissing polynomials. Journal of Approximation Theory, v. 255, p. 1-42, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.jat.2020.105408. Acesso em: 31 out. 2024.
    • APA

      Celsus, A. F., & Silva, G. L. F. da. (2020). Supercritical regime for the kissing polynomials. Journal of Approximation Theory, 255, 1-42. doi:10.1016/j.jat.2020.105408
    • NLM

      Celsus AF, Silva GLF da. Supercritical regime for the kissing polynomials [Internet]. Journal of Approximation Theory. 2020 ; 255 1-42.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.jat.2020.105408
    • Vancouver

      Celsus AF, Silva GLF da. Supercritical regime for the kissing polynomials [Internet]. Journal of Approximation Theory. 2020 ; 255 1-42.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.jat.2020.105408
  • Source: Israel Journal of Mathematics. Unidade: ICMC

    Subjects: GEOMETRIA ARITMÉTICA, TEORIA DOS NÚMEROS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALVARENGA, Roberto. Hall algebras and graphs of Hecke operators for elliptic curves. Israel Journal of Mathematics, v. 239, n. 1, p. 215-269, 2020Tradução . . Disponível em: https://doi.org/10.1007/s11856-020-2056-2. Acesso em: 31 out. 2024.
    • APA

      Alvarenga, R. (2020). Hall algebras and graphs of Hecke operators for elliptic curves. Israel Journal of Mathematics, 239( 1), 215-269. doi:10.1007/s11856-020-2056-2
    • NLM

      Alvarenga R. Hall algebras and graphs of Hecke operators for elliptic curves [Internet]. Israel Journal of Mathematics. 2020 ; 239( 1): 215-269.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s11856-020-2056-2
    • Vancouver

      Alvarenga R. Hall algebras and graphs of Hecke operators for elliptic curves [Internet]. Israel Journal of Mathematics. 2020 ; 239( 1): 215-269.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s11856-020-2056-2
  • Source: Bulletin of the Brazilian Mathematical Society : New Series. Unidade: ICMC

    Subjects: GEOMETRIA DIFERENCIAL CLÁSSICA, SUBVARIEDADES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CHION, Sergio e TOJEIRO, Ruy. Euclidean hypersurfaces with genuine conformal deformations in codimension two. Bulletin of the Brazilian Mathematical Society : New Series, v. 51, n. 3, p. Se 2020, 2020Tradução . . Disponível em: https://doi.org/10.1007/s00574-019-00173-w. Acesso em: 31 out. 2024.
    • APA

      Chion, S., & Tojeiro, R. (2020). Euclidean hypersurfaces with genuine conformal deformations in codimension two. Bulletin of the Brazilian Mathematical Society : New Series, 51( 3), Se 2020. doi:10.1007/s00574-019-00173-w
    • NLM

      Chion S, Tojeiro R. Euclidean hypersurfaces with genuine conformal deformations in codimension two [Internet]. Bulletin of the Brazilian Mathematical Society : New Series. 2020 ; 51( 3): Se 2020.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00574-019-00173-w
    • Vancouver

      Chion S, Tojeiro R. Euclidean hypersurfaces with genuine conformal deformations in codimension two [Internet]. Bulletin of the Brazilian Mathematical Society : New Series. 2020 ; 51( 3): Se 2020.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00574-019-00173-w
  • Source: Journal of Fourier Analysis and Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, SÉRIES DE FOURIER

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DATTORI DA SILVA, Paulo Leandro e MEZIANI, A. A Gevrey differential complex on the torus. Journal of Fourier Analysis and Applications, v. 26, n. 1, p. 1-25, 2020Tradução . . Disponível em: https://doi.org/10.1007/s00041-019-09713-w. Acesso em: 31 out. 2024.
    • APA

      Dattori da Silva, P. L., & Meziani, A. (2020). A Gevrey differential complex on the torus. Journal of Fourier Analysis and Applications, 26( 1), 1-25. doi:10.1007/s00041-019-09713-w
    • NLM

      Dattori da Silva PL, Meziani A. A Gevrey differential complex on the torus [Internet]. Journal of Fourier Analysis and Applications. 2020 ; 26( 1): 1-25.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00041-019-09713-w
    • Vancouver

      Dattori da Silva PL, Meziani A. A Gevrey differential complex on the torus [Internet]. Journal of Fourier Analysis and Applications. 2020 ; 26( 1): 1-25.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00041-019-09713-w
  • Source: Finite Fields and their Applications. Unidade: ICMC

    Subjects: POLINÔMIOS, CORPOS FINITOS, MATRIZES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      REIS, Lucas da Silva. On the existence and number of invariant polynomials. Finite Fields and their Applications, v. 61, n. Ja 2020, p. 1-13, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.ffa.2019.101605. Acesso em: 31 out. 2024.
    • APA

      Reis, L. da S. (2020). On the existence and number of invariant polynomials. Finite Fields and their Applications, 61( Ja 2020), 1-13. doi:10.1016/j.ffa.2019.101605
    • NLM

      Reis L da S. On the existence and number of invariant polynomials [Internet]. Finite Fields and their Applications. 2020 ; 61( Ja 2020): 1-13.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.ffa.2019.101605
    • Vancouver

      Reis L da S. On the existence and number of invariant polynomials [Internet]. Finite Fields and their Applications. 2020 ; 61( Ja 2020): 1-13.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.ffa.2019.101605
  • Source: Indiana University Mathematics Journal. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRUSCHI, Simone Mazzini e CARVALHO, Alexandre Nolasco de e PIMENTEL, Juliana Fernandes da Silva. Limiting grow-up behavior for a one-parameter family of dissipative PDEs. Indiana University Mathematics Journal, v. 69, n. 2, p. 657-683, 2020Tradução . . Disponível em: https://doi.org/10.1512/iumj.2020.69.7836. Acesso em: 31 out. 2024.
    • APA

      Bruschi, S. M., Carvalho, A. N. de, & Pimentel, J. F. da S. (2020). Limiting grow-up behavior for a one-parameter family of dissipative PDEs. Indiana University Mathematics Journal, 69( 2), 657-683. doi:10.1512/iumj.2020.69.7836
    • NLM

      Bruschi SM, Carvalho AN de, Pimentel JF da S. Limiting grow-up behavior for a one-parameter family of dissipative PDEs [Internet]. Indiana University Mathematics Journal. 2020 ; 69( 2): 657-683.[citado 2024 out. 31 ] Available from: https://doi.org/10.1512/iumj.2020.69.7836
    • Vancouver

      Bruschi SM, Carvalho AN de, Pimentel JF da S. Limiting grow-up behavior for a one-parameter family of dissipative PDEs [Internet]. Indiana University Mathematics Journal. 2020 ; 69( 2): 657-683.[citado 2024 out. 31 ] Available from: https://doi.org/10.1512/iumj.2020.69.7836
  • Source: Journal of Statistical Physics. Unidade: INTER: ICMC -UFSCAR

    Subjects: PROCESSOS EM MEIOS ALEATÓRIOS, MECÂNICA ESTATÍSTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JUNIOR, Valdivino V e RODRÍGUEZ, Pablo Martín e SPEROTO, Adalto. The Maki-Thompson rumor model on infinite Cayley trees. Journal of Statistical Physics, v. No 2020, n. 4, p. 1204-1217, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10955-020-02623-y. Acesso em: 31 out. 2024.
    • APA

      Junior, V. V., Rodríguez, P. M., & Speroto, A. (2020). The Maki-Thompson rumor model on infinite Cayley trees. Journal of Statistical Physics, No 2020( 4), 1204-1217. doi:10.1007/s10955-020-02623-y
    • NLM

      Junior VV, Rodríguez PM, Speroto A. The Maki-Thompson rumor model on infinite Cayley trees [Internet]. Journal of Statistical Physics. 2020 ; No 2020( 4): 1204-1217.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s10955-020-02623-y
    • Vancouver

      Junior VV, Rodríguez PM, Speroto A. The Maki-Thompson rumor model on infinite Cayley trees [Internet]. Journal of Statistical Physics. 2020 ; No 2020( 4): 1204-1217.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s10955-020-02623-y
  • Source: Transactions of the American Mathematical Society. Unidade: ICMC

    Subjects: SINGULARIDADES, CURVAS (GEOMETRIA), GEOMETRIA DIFERENCIAL AFIM

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DEOLINDO-SILVA, Jorge Luiz e TARI, Farid. On the differential geometry of holomorphic plane curves. Transactions of the American Mathematical Society, v. 373, n. 10, p. 6817-6833, 2020Tradução . . Disponível em: https://doi.org/10.1090/tran/8136. Acesso em: 31 out. 2024.
    • APA

      Deolindo-Silva, J. L., & Tari, F. (2020). On the differential geometry of holomorphic plane curves. Transactions of the American Mathematical Society, 373( 10), 6817-6833. doi:10.1090/tran/8136
    • NLM

      Deolindo-Silva JL, Tari F. On the differential geometry of holomorphic plane curves [Internet]. Transactions of the American Mathematical Society. 2020 ; 373( 10): 6817-6833.[citado 2024 out. 31 ] Available from: https://doi.org/10.1090/tran/8136
    • Vancouver

      Deolindo-Silva JL, Tari F. On the differential geometry of holomorphic plane curves [Internet]. Transactions of the American Mathematical Society. 2020 ; 373( 10): 6817-6833.[citado 2024 out. 31 ] Available from: https://doi.org/10.1090/tran/8136
  • Source: Journal of Algebra. Unidade: ICMC

    Subjects: ÁLGEBRA, VALORIZAÇÕES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MORAES, Michael Willyans Borges de e NOVACOSKI, Josnei. Perron transforms and Hironaka’s game. Journal of Algebra, v. 563, p. 100-110, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2020.05.028. Acesso em: 31 out. 2024.
    • APA

      Moraes, M. W. B. de, & Novacoski, J. (2020). Perron transforms and Hironaka’s game. Journal of Algebra, 563, 100-110. doi:10.1016/j.jalgebra.2020.05.028
    • NLM

      Moraes MWB de, Novacoski J. Perron transforms and Hironaka’s game [Internet]. Journal of Algebra. 2020 ; 563 100-110.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.jalgebra.2020.05.028
    • Vancouver

      Moraes MWB de, Novacoski J. Perron transforms and Hironaka’s game [Internet]. Journal of Algebra. 2020 ; 563 100-110.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.jalgebra.2020.05.028
  • Source: Electronic Journal of Differential Equations. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, INVARIANTES

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos e VALLS, Claudia. Global dynamics of the May-Leonard system with a Darboux invariant. Electronic Journal of Differential Equations, v. 2020, n. 55, p. 1-19, 2020Tradução . . Disponível em: https://ejde.math.txstate.edu/Volumes/2020/55/oliveira.pdf. Acesso em: 31 out. 2024.
    • APA

      Oliveira, R. D. dos S., & Valls, C. (2020). Global dynamics of the May-Leonard system with a Darboux invariant. Electronic Journal of Differential Equations, 2020( 55), 1-19. Recuperado de https://ejde.math.txstate.edu/Volumes/2020/55/oliveira.pdf
    • NLM

      Oliveira RD dos S, Valls C. Global dynamics of the May-Leonard system with a Darboux invariant [Internet]. Electronic Journal of Differential Equations. 2020 ; 2020( 55): 1-19.[citado 2024 out. 31 ] Available from: https://ejde.math.txstate.edu/Volumes/2020/55/oliveira.pdf
    • Vancouver

      Oliveira RD dos S, Valls C. Global dynamics of the May-Leonard system with a Darboux invariant [Internet]. Electronic Journal of Differential Equations. 2020 ; 2020( 55): 1-19.[citado 2024 out. 31 ] Available from: https://ejde.math.txstate.edu/Volumes/2020/55/oliveira.pdf
  • Source: Calculus of Variations and Partial Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS, PROBLEMAS DE CONTORNO, ESPAÇOS DE ORLICZ, ESPAÇOS DE SOBOLEV

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, Jefferson Abrantes e SOARES, Sérgio Henrique Monari. Optimal design problems for a degenerate operator in Orlicz-Sobolev spaces. Calculus of Variations and Partial Differential Equations, v. 59, n. 6, p. 1-23, 2020Tradução . . Disponível em: https://doi.org/10.1007/s00526-020-01857-8. Acesso em: 31 out. 2024.
    • APA

      Santos, J. A., & Soares, S. H. M. (2020). Optimal design problems for a degenerate operator in Orlicz-Sobolev spaces. Calculus of Variations and Partial Differential Equations, 59( 6), 1-23. doi:10.1007/s00526-020-01857-8
    • NLM

      Santos JA, Soares SHM. Optimal design problems for a degenerate operator in Orlicz-Sobolev spaces [Internet]. Calculus of Variations and Partial Differential Equations. 2020 ; 59( 6): 1-23.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00526-020-01857-8
    • Vancouver

      Santos JA, Soares SHM. Optimal design problems for a degenerate operator in Orlicz-Sobolev spaces [Internet]. Calculus of Variations and Partial Differential Equations. 2020 ; 59( 6): 1-23.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00526-020-01857-8

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024