Filtros : "Indexado no Zentralblatt MATH" "Polônia" Removido: "Brasil" Limpar

Filtros



Refine with date range


  • Source: Studia Mathematica. Unidade: ICMC

    Subjects: ESPAÇOS DE INTERPOLAÇÃO, ESPAÇOS DE BANACH, ÁLGEBRAS DE BANACH

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SÁNCHEZ, Félix Cabello e CASTILLO, Jesús M. F e CORRÊA, Willian Hans Goes. Higher order derivatives of analytic families of Banach spaces. Studia Mathematica, v. 272, p. 245-297, 2023Tradução . . Disponível em: https://doi.org/10.4064/sm220919-3-2. Acesso em: 31 out. 2024.
    • APA

      Sánchez, F. C., Castillo, J. M. F., & Corrêa, W. H. G. (2023). Higher order derivatives of analytic families of Banach spaces. Studia Mathematica, 272, 245-297. doi:10.4064/sm220919-3-2
    • NLM

      Sánchez FC, Castillo JMF, Corrêa WHG. Higher order derivatives of analytic families of Banach spaces [Internet]. Studia Mathematica. 2023 ; 272 245-297.[citado 2024 out. 31 ] Available from: https://doi.org/10.4064/sm220919-3-2
    • Vancouver

      Sánchez FC, Castillo JMF, Corrêa WHG. Higher order derivatives of analytic families of Banach spaces [Internet]. Studia Mathematica. 2023 ; 272 245-297.[citado 2024 out. 31 ] Available from: https://doi.org/10.4064/sm220919-3-2
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA DAS SINGULARIDADES, DINÂMICA TOPOLÓGICA, TEORIA DO ÍNDICE, VARIEDADES TOPOLÓGICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      REZENDE, Ketty Abaroa de et al. Gutierrez-Sotomayor flows on singular surfaces. Topological Methods in Nonlinear Analysis, v. 60, n. 1, p. 221-265, 2022Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2021.054. Acesso em: 31 out. 2024.
    • APA

      Rezende, K. A. de, Grulha Júnior, N. de G., Lima, D. V. de S., & Zigart, M. A. de J. (2022). Gutierrez-Sotomayor flows on singular surfaces. Topological Methods in Nonlinear Analysis, 60( 1), 221-265. doi:10.12775/TMNA.2021.054
    • NLM

      Rezende KA de, Grulha Júnior N de G, Lima DV de S, Zigart MA de J. Gutierrez-Sotomayor flows on singular surfaces [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 60( 1): 221-265.[citado 2024 out. 31 ] Available from: https://doi.org/10.12775/TMNA.2021.054
    • Vancouver

      Rezende KA de, Grulha Júnior N de G, Lima DV de S, Zigart MA de J. Gutierrez-Sotomayor flows on singular surfaces [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 60( 1): 221-265.[citado 2024 out. 31 ] Available from: https://doi.org/10.12775/TMNA.2021.054
  • Source: Colloquium Mathematicum. Unidade: ICMC

    Subjects: SIMETRIA, GRUPOS DE LORENTZ, GEOMETRIA DE INCIDÊNCIA, TEORIA GEOMÉTRICA DE INVARIANTES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MANOEL, Miriam Garcia e OLIVEIRA, Leandro Nery de. Equivariant mappings and invariant sets on Minkowski space. Colloquium Mathematicum, v. 167, n. 1, p. 93-107, 2022Tradução . . Disponível em: https://doi.org/10.4064/cm7896-10-2020. Acesso em: 31 out. 2024.
    • APA

      Manoel, M. G., & Oliveira, L. N. de. (2022). Equivariant mappings and invariant sets on Minkowski space. Colloquium Mathematicum, 167( 1), 93-107. doi:10.4064/cm7896-10-2020
    • NLM

      Manoel MG, Oliveira LN de. Equivariant mappings and invariant sets on Minkowski space [Internet]. Colloquium Mathematicum. 2022 ; 167( 1): 93-107.[citado 2024 out. 31 ] Available from: https://doi.org/10.4064/cm7896-10-2020
    • Vancouver

      Manoel MG, Oliveira LN de. Equivariant mappings and invariant sets on Minkowski space [Internet]. Colloquium Mathematicum. 2022 ; 167( 1): 93-107.[citado 2024 out. 31 ] Available from: https://doi.org/10.4064/cm7896-10-2020
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, INVARIANTES, TEORIA DA BIFURCAÇÃO, SISTEMAS DIFERENCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOTA, Marcos Coutinho et al. Geometric analysis of quadratic differential systems with invariant ellipses. Topological Methods in Nonlinear Analysis, v. 59, n. 2A, p. 623-685, 2022Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2021.063. Acesso em: 31 out. 2024.
    • APA

      Mota, M. C., Rezende, A. C., Schlomiuk, D., & Vulpe, N. (2022). Geometric analysis of quadratic differential systems with invariant ellipses. Topological Methods in Nonlinear Analysis, 59( 2A), 623-685. doi:10.12775/TMNA.2021.063
    • NLM

      Mota MC, Rezende AC, Schlomiuk D, Vulpe N. Geometric analysis of quadratic differential systems with invariant ellipses [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 59( 2A): 623-685.[citado 2024 out. 31 ] Available from: https://doi.org/10.12775/TMNA.2021.063
    • Vancouver

      Mota MC, Rezende AC, Schlomiuk D, Vulpe N. Geometric analysis of quadratic differential systems with invariant ellipses [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 59( 2A): 623-685.[citado 2024 out. 31 ] Available from: https://doi.org/10.12775/TMNA.2021.063
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, SOLUÇÕES PERIÓDICAS, INTEGRAL DE DENJOY, INTEGRAL DE PERRON, TEOREMA DO PONTO FIXO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEDERSON, Marcia e GRAU, Rogelio e MACENA, Maria Carolina Stefani Mesquita. Affine-periodic solutions for generalized ODEs and other equations. Topological Methods in Nonlinear Analysis, v. 60, n. 2, p. 725-760, 2022Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2022.027. Acesso em: 31 out. 2024.
    • APA

      Federson, M., Grau, R., & Macena, M. C. S. M. (2022). Affine-periodic solutions for generalized ODEs and other equations. Topological Methods in Nonlinear Analysis, 60( 2), 725-760. doi:10.12775/TMNA.2022.027
    • NLM

      Federson M, Grau R, Macena MCSM. Affine-periodic solutions for generalized ODEs and other equations [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 60( 2): 725-760.[citado 2024 out. 31 ] Available from: https://doi.org/10.12775/TMNA.2022.027
    • Vancouver

      Federson M, Grau R, Macena MCSM. Affine-periodic solutions for generalized ODEs and other equations [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 60( 2): 725-760.[citado 2024 out. 31 ] Available from: https://doi.org/10.12775/TMNA.2022.027
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: ESPAÇOS FIBRADOS, ROBÓTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ZAPATA, Cesar Augusto Ipanaque e GONZÁLEZ, Jesús. Sectional category and the fixed point property. Topological Methods in Nonlinear Analysis, v. 56, n. 2, p. 559-578, 2020Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2020.033. Acesso em: 31 out. 2024.
    • APA

      Zapata, C. A. I., & González, J. (2020). Sectional category and the fixed point property. Topological Methods in Nonlinear Analysis, 56( 2), 559-578. doi:10.12775/TMNA.2020.033
    • NLM

      Zapata CAI, González J. Sectional category and the fixed point property [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 56( 2): 559-578.[citado 2024 out. 31 ] Available from: https://doi.org/10.12775/TMNA.2020.033
    • Vancouver

      Zapata CAI, González J. Sectional category and the fixed point property [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 56( 2): 559-578.[citado 2024 out. 31 ] Available from: https://doi.org/10.12775/TMNA.2020.033
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: HOMOTOPIA, HOMOLOGIA, COHOMOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PENTEADO, Northon Canevari Leme e MANZOLI NETO, Oziride. Representing homotopy classes by maps with certain minimality root properties II. Topological Methods in Nonlinear Analysis, v. 56, n. 2, p. 473-482, 2020Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2020.056. Acesso em: 31 out. 2024.
    • APA

      Penteado, N. C. L., & Manzoli Neto, O. (2020). Representing homotopy classes by maps with certain minimality root properties II. Topological Methods in Nonlinear Analysis, 56( 2), 473-482. doi:10.12775/TMNA.2020.056
    • NLM

      Penteado NCL, Manzoli Neto O. Representing homotopy classes by maps with certain minimality root properties II [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 56( 2): 473-482.[citado 2024 out. 31 ] Available from: https://doi.org/10.12775/TMNA.2020.056
    • Vancouver

      Penteado NCL, Manzoli Neto O. Representing homotopy classes by maps with certain minimality root properties II [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 56( 2): 473-482.[citado 2024 out. 31 ] Available from: https://doi.org/10.12775/TMNA.2020.056
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e PIRES, Leonardo. Parabolic equations with localized large diffusion: rate of convergence of attractors. Topological Methods in Nonlinear Analysis, v. 53, n. 1, p. 1-23, 2019Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2018.048. Acesso em: 31 out. 2024.
    • APA

      Carvalho, A. N. de, & Pires, L. (2019). Parabolic equations with localized large diffusion: rate of convergence of attractors. Topological Methods in Nonlinear Analysis, 53( 1), 1-23. doi:10.12775/TMNA.2018.048
    • NLM

      Carvalho AN de, Pires L. Parabolic equations with localized large diffusion: rate of convergence of attractors [Internet]. Topological Methods in Nonlinear Analysis. 2019 ; 53( 1): 1-23.[citado 2024 out. 31 ] Available from: https://doi.org/10.12775/TMNA.2018.048
    • Vancouver

      Carvalho AN de, Pires L. Parabolic equations with localized large diffusion: rate of convergence of attractors [Internet]. Topological Methods in Nonlinear Analysis. 2019 ; 53( 1): 1-23.[citado 2024 out. 31 ] Available from: https://doi.org/10.12775/TMNA.2018.048
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: TEORIA DO ÍNDICE, TOPOLOGIA DINÂMICA, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. Conley index continuation for a singularly perturbed periodic boundary value problem. Topological Methods in Nonlinear Analysis, v. 54, n. 1, p. Se 2019, 2019Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2019.023. Acesso em: 31 out. 2024.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2019). Conley index continuation for a singularly perturbed periodic boundary value problem. Topological Methods in Nonlinear Analysis, 54( 1), Se 2019. doi:10.12775/TMNA.2019.023
    • NLM

      Carbinatto M do C, Rybakowski KP. Conley index continuation for a singularly perturbed periodic boundary value problem [Internet]. Topological Methods in Nonlinear Analysis. 2019 ; 54( 1): Se 2019.[citado 2024 out. 31 ] Available from: https://doi.org/10.12775/TMNA.2019.023
    • Vancouver

      Carbinatto M do C, Rybakowski KP. Conley index continuation for a singularly perturbed periodic boundary value problem [Internet]. Topological Methods in Nonlinear Analysis. 2019 ; 54( 1): Se 2019.[citado 2024 out. 31 ] Available from: https://doi.org/10.12775/TMNA.2019.023
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, TEORIA ESPECTRAL, TEORIA DO ÍNDICE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. On spectral convergence for some parabolic problems with locally large diffusion. Topological Methods in Nonlinear Analysis, v. 52, n. 2, p. 631-664, 2018Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2018.025. Acesso em: 31 out. 2024.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2018). On spectral convergence for some parabolic problems with locally large diffusion. Topological Methods in Nonlinear Analysis, 52( 2), 631-664. doi:10.12775/TMNA.2018.025
    • NLM

      Carbinatto M do C, Rybakowski KP. On spectral convergence for some parabolic problems with locally large diffusion [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 52( 2): 631-664.[citado 2024 out. 31 ] Available from: https://doi.org/10.12775/TMNA.2018.025
    • Vancouver

      Carbinatto M do C, Rybakowski KP. On spectral convergence for some parabolic problems with locally large diffusion [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 52( 2): 631-664.[citado 2024 out. 31 ] Available from: https://doi.org/10.12775/TMNA.2018.025
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, TOPOLOGIA DIFERENCIAL, TEORIA DAS SINGULARIDADES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARTÍNEZ-ALFARO, José e MEZA-SARMIENTO, Ingrid S e OLIVEIRA, Regilene Delazari dos Santos. Singular levels and topological invariants of Morse–Bott foliations on non-orientable surfaces. Topological Methods in Nonlinear Analysis, v. 51, n. 1, p. 183-213, 2018Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2017.051. Acesso em: 31 out. 2024.
    • APA

      Martínez-Alfaro, J., Meza-Sarmiento, I. S., & Oliveira, R. D. dos S. (2018). Singular levels and topological invariants of Morse–Bott foliations on non-orientable surfaces. Topological Methods in Nonlinear Analysis, 51( 1), 183-213. doi:10.12775/TMNA.2017.051
    • NLM

      Martínez-Alfaro J, Meza-Sarmiento IS, Oliveira RD dos S. Singular levels and topological invariants of Morse–Bott foliations on non-orientable surfaces [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 51( 1): 183-213.[citado 2024 out. 31 ] Available from: https://doi.org/10.12775/TMNA.2017.051
    • Vancouver

      Martínez-Alfaro J, Meza-Sarmiento IS, Oliveira RD dos S. Singular levels and topological invariants of Morse–Bott foliations on non-orientable surfaces [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 51( 1): 183-213.[citado 2024 out. 31 ] Available from: https://doi.org/10.12775/TMNA.2017.051
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: DINÂMICA TOPOLÓGICA, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. A note on Conley index and some parabolic problems with locally large diffusion. Topological Methods in Nonlinear Analysis, v. 50, n. 2, p. 741-755, 2017Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2017.043. Acesso em: 31 out. 2024.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2017). A note on Conley index and some parabolic problems with locally large diffusion. Topological Methods in Nonlinear Analysis, 50( 2), 741-755. doi:10.12775/TMNA.2017.043
    • NLM

      Carbinatto M do C, Rybakowski KP. A note on Conley index and some parabolic problems with locally large diffusion [Internet]. Topological Methods in Nonlinear Analysis. 2017 ; 50( 2): 741-755.[citado 2024 out. 31 ] Available from: https://doi.org/10.12775/TMNA.2017.043
    • Vancouver

      Carbinatto M do C, Rybakowski KP. A note on Conley index and some parabolic problems with locally large diffusion [Internet]. Topological Methods in Nonlinear Analysis. 2017 ; 50( 2): 741-755.[citado 2024 out. 31 ] Available from: https://doi.org/10.12775/TMNA.2017.043
  • Source: Acta Arithmetica. Unidade: ICMC

    Subjects: FUNÇÕES ALGÉBRICAS, CURVAS ALGÉBRICAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAKELIAN, Nazar e BORGES, Herivelto. Frobenius nonclassicality with respect to linear systems of curves of arbitrary degree. Acta Arithmetica, v. 167, p. 43-66, 2015Tradução . . Disponível em: https://doi.org/10.4064/aa167-1-3. Acesso em: 31 out. 2024.
    • APA

      Arakelian, N., & Borges, H. (2015). Frobenius nonclassicality with respect to linear systems of curves of arbitrary degree. Acta Arithmetica, 167, 43-66. doi:10.4064/aa167-1-3
    • NLM

      Arakelian N, Borges H. Frobenius nonclassicality with respect to linear systems of curves of arbitrary degree [Internet]. Acta Arithmetica. 2015 ; 167 43-66.[citado 2024 out. 31 ] Available from: https://doi.org/10.4064/aa167-1-3
    • Vancouver

      Arakelian N, Borges H. Frobenius nonclassicality with respect to linear systems of curves of arbitrary degree [Internet]. Acta Arithmetica. 2015 ; 167 43-66.[citado 2024 out. 31 ] Available from: https://doi.org/10.4064/aa167-1-3
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: DINÂMICA TOPOLÓGICA, EQUAÇÕES IMPULSIVAS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e JIMENEZ, Manuel Francisco Zuloeta. On impulsive semidynamical systems: minimal, recurrent and almost periodic motions. Topological Methods in Nonlinear Analysis, v. 44, n. 1, p. 121-141, 2014Tradução . . Disponível em: https://doi.org/10.12775/tmna.2014.039. Acesso em: 31 out. 2024.
    • APA

      Bonotto, E. de M., & Jimenez, M. F. Z. (2014). On impulsive semidynamical systems: minimal, recurrent and almost periodic motions. Topological Methods in Nonlinear Analysis, 44( 1), 121-141. doi:10.12775/tmna.2014.039
    • NLM

      Bonotto E de M, Jimenez MFZ. On impulsive semidynamical systems: minimal, recurrent and almost periodic motions [Internet]. Topological Methods in Nonlinear Analysis. 2014 ; 44( 1): 121-141.[citado 2024 out. 31 ] Available from: https://doi.org/10.12775/tmna.2014.039
    • Vancouver

      Bonotto E de M, Jimenez MFZ. On impulsive semidynamical systems: minimal, recurrent and almost periodic motions [Internet]. Topological Methods in Nonlinear Analysis. 2014 ; 44( 1): 121-141.[citado 2024 out. 31 ] Available from: https://doi.org/10.12775/tmna.2014.039
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: DINÂMICA TOPOLÓGICA, EQUAÇÕES IMPULSIVAS, SISTEMAS DISSIPATIVO

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e DEMUNER, Daniela P. Autonomous dissipative semidynamical systems with impulses. Topological Methods in Nonlinear Analysis, v. 41, n. 1, p. 1-38, 2013Tradução . . Disponível em: https://projecteuclid.org/euclid.tmna/1461253854. Acesso em: 31 out. 2024.
    • APA

      Bonotto, E. de M., & Demuner, D. P. (2013). Autonomous dissipative semidynamical systems with impulses. Topological Methods in Nonlinear Analysis, 41( 1), 1-38. Recuperado de https://projecteuclid.org/euclid.tmna/1461253854
    • NLM

      Bonotto E de M, Demuner DP. Autonomous dissipative semidynamical systems with impulses [Internet]. Topological Methods in Nonlinear Analysis. 2013 ; 41( 1): 1-38.[citado 2024 out. 31 ] Available from: https://projecteuclid.org/euclid.tmna/1461253854
    • Vancouver

      Bonotto E de M, Demuner DP. Autonomous dissipative semidynamical systems with impulses [Internet]. Topological Methods in Nonlinear Analysis. 2013 ; 41( 1): 1-38.[citado 2024 out. 31 ] Available from: https://projecteuclid.org/euclid.tmna/1461253854
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. Resolvent convergence for Laplace operators on unbounded curved squeezed domains. Topological Methods in Nonlinear Analysis, v. 42, n. 2, p. 233-256, 2013Tradução . . Acesso em: 31 out. 2024.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2013). Resolvent convergence for Laplace operators on unbounded curved squeezed domains. Topological Methods in Nonlinear Analysis, 42( 2), 233-256.
    • NLM

      Carbinatto M do C, Rybakowski KP. Resolvent convergence for Laplace operators on unbounded curved squeezed domains. Topological Methods in Nonlinear Analysis. 2013 ; 42( 2): 233-256.[citado 2024 out. 31 ]
    • Vancouver

      Carbinatto M do C, Rybakowski KP. Resolvent convergence for Laplace operators on unbounded curved squeezed domains. Topological Methods in Nonlinear Analysis. 2013 ; 42( 2): 233-256.[citado 2024 out. 31 ]
  • Source: Central European Journal of Mathematics. Unidade: ICMC

    Assunto: SINGULARIDADES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAÚJO DOS SANTOS, Raimundo Nonato e CHEN, Ying e TIBAR, Mihai. Singular open book structures from real mappings. Central European Journal of Mathematics, v. 11, n. 5, p. 817-828, 2013Tradução . . Disponível em: https://doi.org/10.2478/s11533-013-0212-1. Acesso em: 31 out. 2024.
    • APA

      Araújo dos Santos, R. N., CHEN, Y., & Tibar, M. (2013). Singular open book structures from real mappings. Central European Journal of Mathematics, 11( 5), 817-828. doi:10.2478/s11533-013-0212-1
    • NLM

      Araújo dos Santos RN, CHEN Y, Tibar M. Singular open book structures from real mappings [Internet]. Central European Journal of Mathematics. 2013 ; 11( 5): 817-828.[citado 2024 out. 31 ] Available from: https://doi.org/10.2478/s11533-013-0212-1
    • Vancouver

      Araújo dos Santos RN, CHEN Y, Tibar M. Singular open book structures from real mappings [Internet]. Central European Journal of Mathematics. 2013 ; 11( 5): 817-828.[citado 2024 out. 31 ] Available from: https://doi.org/10.2478/s11533-013-0212-1
  • Source: Colloquium Mathematicum. Unidade: ICMC

    Assunto: ANÁLISE FUNCIONAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CASTRO, M. H e MENEGATTO, Valdir Antônio e PERON, Ana Paula. Integral operators generated by Mercer-like Kernels on topological spaces. Colloquium Mathematicum, v. 126, n. 1, p. 125-138, 2012Tradução . . Disponível em: https://doi.org/10.4064/cm126-1-9. Acesso em: 31 out. 2024.
    • APA

      Castro, M. H., Menegatto, V. A., & Peron, A. P. (2012). Integral operators generated by Mercer-like Kernels on topological spaces. Colloquium Mathematicum, 126( 1), 125-138. doi:10.4064/cm126-1-9
    • NLM

      Castro MH, Menegatto VA, Peron AP. Integral operators generated by Mercer-like Kernels on topological spaces [Internet]. Colloquium Mathematicum. 2012 ; 126( 1): 125-138.[citado 2024 out. 31 ] Available from: https://doi.org/10.4064/cm126-1-9
    • Vancouver

      Castro MH, Menegatto VA, Peron AP. Integral operators generated by Mercer-like Kernels on topological spaces [Internet]. Colloquium Mathematicum. 2012 ; 126( 1): 125-138.[citado 2024 out. 31 ] Available from: https://doi.org/10.4064/cm126-1-9
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Assunto: ESPAÇOS FIBRADOS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MATTOS, Denise de e SANTOS, Edivaldo L. dos. On nonsymmetric theorems for (H,G)-coincidences. Topological Methods in Nonlinear Analysis, v. 33, n. 1, p. 105-119, 2009Tradução . . Disponível em: https://doi.org/10.12775/tmna.2009.008. Acesso em: 31 out. 2024.
    • APA

      Mattos, D. de, & Santos, E. L. dos. (2009). On nonsymmetric theorems for (H,G)-coincidences. Topological Methods in Nonlinear Analysis, 33( 1), 105-119. doi:10.12775/tmna.2009.008
    • NLM

      Mattos D de, Santos EL dos. On nonsymmetric theorems for (H,G)-coincidences [Internet]. Topological Methods in Nonlinear Analysis. 2009 ; 33( 1): 105-119.[citado 2024 out. 31 ] Available from: https://doi.org/10.12775/tmna.2009.008
    • Vancouver

      Mattos D de, Santos EL dos. On nonsymmetric theorems for (H,G)-coincidences [Internet]. Topological Methods in Nonlinear Analysis. 2009 ; 33( 1): 105-119.[citado 2024 out. 31 ] Available from: https://doi.org/10.12775/tmna.2009.008
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: ESTABILIDADE ESTRUTURAL (EQUAÇÕES DIFERENCIAIS ORDINÁRIAS), SISTEMAS DINÂMICOS, TEORIA QUALITATIVA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. On the suspension isomorphism for index braids in a singular perturbation problem. Topological Methods in Nonlinear Analysis, v. 32, n. 2, p. 199-225, 2008Tradução . . Disponível em: https://projecteuclid.org/euclid.tmna/1463151164. Acesso em: 31 out. 2024.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2008). On the suspension isomorphism for index braids in a singular perturbation problem. Topological Methods in Nonlinear Analysis, 32( 2), 199-225. Recuperado de https://projecteuclid.org/euclid.tmna/1463151164
    • NLM

      Carbinatto M do C, Rybakowski KP. On the suspension isomorphism for index braids in a singular perturbation problem [Internet]. Topological Methods in Nonlinear Analysis. 2008 ; 32( 2): 199-225.[citado 2024 out. 31 ] Available from: https://projecteuclid.org/euclid.tmna/1463151164
    • Vancouver

      Carbinatto M do C, Rybakowski KP. On the suspension isomorphism for index braids in a singular perturbation problem [Internet]. Topological Methods in Nonlinear Analysis. 2008 ; 32( 2): 199-225.[citado 2024 out. 31 ] Available from: https://projecteuclid.org/euclid.tmna/1463151164

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024