Filtros : "Indexado no Zentralblatt MATH" "SISTEMAS DINÂMICOS" Removido: "Indexado no ISI" Limpar

Filtros



Refine with date range


  • Source: Carpathian Journal of Mathematics. Unidade: ICMC

    Subjects: TEORIA DA BIFURCAÇÃO, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOZA, Gheorghe et al. Stability and bifurcation analysis of a four-dimensional economic model. Carpathian Journal of Mathematics, v. 40, n. 1, p. 139-153, 2024Tradução . . Disponível em: https://doi.org/10.37193/CJM.2024.01.10. Acesso em: 31 out. 2024.
    • APA

      Moza, G., Rocşoreanu, C., Sterpu, M., & Oliveira, R. D. dos S. (2024). Stability and bifurcation analysis of a four-dimensional economic model. Carpathian Journal of Mathematics, 40( 1), 139-153. doi:10.37193/CJM.2024.01.10
    • NLM

      Moza G, Rocşoreanu C, Sterpu M, Oliveira RD dos S. Stability and bifurcation analysis of a four-dimensional economic model [Internet]. Carpathian Journal of Mathematics. 2024 ; 40( 1): 139-153.[citado 2024 out. 31 ] Available from: https://doi.org/10.37193/CJM.2024.01.10
    • Vancouver

      Moza G, Rocşoreanu C, Sterpu M, Oliveira RD dos S. Stability and bifurcation analysis of a four-dimensional economic model [Internet]. Carpathian Journal of Mathematics. 2024 ; 40( 1): 139-153.[citado 2024 out. 31 ] Available from: https://doi.org/10.37193/CJM.2024.01.10
  • Source: Nonlinearity. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, TEORIA DA BIFURCAÇÃO, SISTEMAS DINÂMICOS, SIMETRIA, MECÂNICA ESTATÍSTICA, ESTABILIDADE ESTRUTURAL (EQUAÇÕES DIFERENCIAIS ORDINÁRIAS)

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AMORIM, Tiago de Albuquerque e MANOEL, Miriam Garcia. The realisation of admissible graphs for coupled vector fields. Nonlinearity, v. 37, n. Ja 2024, p. 1-26, 2024Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ad0ca4. Acesso em: 31 out. 2024.
    • APA

      Amorim, T. de A., & Manoel, M. G. (2024). The realisation of admissible graphs for coupled vector fields. Nonlinearity, 37( Ja 2024), 1-26. doi:10.1088/1361-6544/ad0ca4
    • NLM

      Amorim T de A, Manoel MG. The realisation of admissible graphs for coupled vector fields [Internet]. Nonlinearity. 2024 ; 37( Ja 2024): 1-26.[citado 2024 out. 31 ] Available from: https://doi.org/10.1088/1361-6544/ad0ca4
    • Vancouver

      Amorim T de A, Manoel MG. The realisation of admissible graphs for coupled vector fields [Internet]. Nonlinearity. 2024 ; 37( Ja 2024): 1-26.[citado 2024 out. 31 ] Available from: https://doi.org/10.1088/1361-6544/ad0ca4
  • Source: Differential Equations and Dynamical Systems. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BALDISSERA, Maíra Duran e LLIBRE, Jaume e OLIVEIRA, Regilene Delazari dos Santos. Dynamics of a generalized rayleigh system. Differential Equations and Dynamical Systems, v. 32, n. 3, p. 933-941, 2024Tradução . . Disponível em: https://doi.org/10.1007/s12591-022-00604-z. Acesso em: 31 out. 2024.
    • APA

      Baldissera, M. D., Llibre, J., & Oliveira, R. D. dos S. (2024). Dynamics of a generalized rayleigh system. Differential Equations and Dynamical Systems, 32( 3), 933-941. doi:10.1007/s12591-022-00604-z
    • NLM

      Baldissera MD, Llibre J, Oliveira RD dos S. Dynamics of a generalized rayleigh system [Internet]. Differential Equations and Dynamical Systems. 2024 ; 32( 3): 933-941.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s12591-022-00604-z
    • Vancouver

      Baldissera MD, Llibre J, Oliveira RD dos S. Dynamics of a generalized rayleigh system [Internet]. Differential Equations and Dynamical Systems. 2024 ; 32( 3): 933-941.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s12591-022-00604-z
  • Source: Mathematische Annalen. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, GEOMETRIA DIFERENCIAL, TOPOLOGIA DIFERENCIAL, GEOMETRIA SIMPLÉTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FINAMORE, Douglas. Quasiconformal contact foliations. Mathematische Annalen, v. 389, n. 2, p. 1575-1598, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00208-023-02687-7. Acesso em: 31 out. 2024.
    • APA

      Finamore, D. (2024). Quasiconformal contact foliations. Mathematische Annalen, 389( 2), 1575-1598. doi:10.1007/s00208-023-02687-7
    • NLM

      Finamore D. Quasiconformal contact foliations [Internet]. Mathematische Annalen. 2024 ; 389( 2): 1575-1598.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00208-023-02687-7
    • Vancouver

      Finamore D. Quasiconformal contact foliations [Internet]. Mathematische Annalen. 2024 ; 389( 2): 1575-1598.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00208-023-02687-7
  • Source: Mathematische Annalen. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, SISTEMAS DINÂMICOS, MÉTODOS VARIACIONAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LAPPICY, Phillipo e BEATRIZ, Ester. An energy formula for fully nonlinear degenerate parabolic equations in one spatial dimension. Mathematische Annalen, v. 389, n. 4, p. 4125-4147, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00208-023-02740-5. Acesso em: 31 out. 2024.
    • APA

      Lappicy, P., & Beatriz, E. (2024). An energy formula for fully nonlinear degenerate parabolic equations in one spatial dimension. Mathematische Annalen, 389( 4), 4125-4147. doi:10.1007/s00208-023-02740-5
    • NLM

      Lappicy P, Beatriz E. An energy formula for fully nonlinear degenerate parabolic equations in one spatial dimension [Internet]. Mathematische Annalen. 2024 ; 389( 4): 4125-4147.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00208-023-02740-5
    • Vancouver

      Lappicy P, Beatriz E. An energy formula for fully nonlinear degenerate parabolic equations in one spatial dimension [Internet]. Mathematische Annalen. 2024 ; 389( 4): 4125-4147.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00208-023-02740-5
  • Source: Journal of Mathematical Physics. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, SISTEMAS DINÂMICOS, DINÂMICA DOS FLUÍDOS, EQUAÇÕES DE NAVIER-STOKES

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARABALLO, Tomás e CARVALHO, Alexandre Nolasco de e LÓPEZ-LÁZARO, Heraclio. Nonlinear dynamical analysis for globally modified incompressible non-Newtonian fluids. Journal of Mathematical Physics, v. No 2023, n. 11, p. 112701-1-112701-29, 2023Tradução . . Disponível em: https://doi.org/10.1063/5.0150897. Acesso em: 31 out. 2024.
    • APA

      Caraballo, T., Carvalho, A. N. de, & López-Lázaro, H. (2023). Nonlinear dynamical analysis for globally modified incompressible non-Newtonian fluids. Journal of Mathematical Physics, No 2023( 11), 112701-1-112701-29. doi:10.1063/5.0150897
    • NLM

      Caraballo T, Carvalho AN de, López-Lázaro H. Nonlinear dynamical analysis for globally modified incompressible non-Newtonian fluids [Internet]. Journal of Mathematical Physics. 2023 ; No 2023( 11): 112701-1-112701-29.[citado 2024 out. 31 ] Available from: https://doi.org/10.1063/5.0150897
    • Vancouver

      Caraballo T, Carvalho AN de, López-Lázaro H. Nonlinear dynamical analysis for globally modified incompressible non-Newtonian fluids [Internet]. Journal of Mathematical Physics. 2023 ; No 2023( 11): 112701-1-112701-29.[citado 2024 out. 31 ] Available from: https://doi.org/10.1063/5.0150897
  • Source: Bulletin of the London Mathematical Society. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TAHZIBI, Ali e ZHANG, Jinhua. Disintegrations of non-hyperbolic ergodic measures along the center foliation of DA maps. Bulletin of the London Mathematical Society, v. 55, n. 3, p. 1404-1418, 2023Tradução . . Disponível em: https://doi.org/10.1112/blms.12800. Acesso em: 31 out. 2024.
    • APA

      Tahzibi, A., & Zhang, J. (2023). Disintegrations of non-hyperbolic ergodic measures along the center foliation of DA maps. Bulletin of the London Mathematical Society, 55( 3), 1404-1418. doi:10.1112/blms.12800
    • NLM

      Tahzibi A, Zhang J. Disintegrations of non-hyperbolic ergodic measures along the center foliation of DA maps [Internet]. Bulletin of the London Mathematical Society. 2023 ; 55( 3): 1404-1418.[citado 2024 out. 31 ] Available from: https://doi.org/10.1112/blms.12800
    • Vancouver

      Tahzibi A, Zhang J. Disintegrations of non-hyperbolic ergodic measures along the center foliation of DA maps [Internet]. Bulletin of the London Mathematical Society. 2023 ; 55( 3): 1404-1418.[citado 2024 out. 31 ] Available from: https://doi.org/10.1112/blms.12800
  • Source: Revista Matematica Complutense. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LAPPICY, Phillipo. Sturm attractors for fully nonlinear parabolic equations. Revista Matematica Complutense, v. 36, n. 3, p. 725-747, 2023Tradução . . Disponível em: https://doi.org/10.1007/s13163-022-00435-0. Acesso em: 31 out. 2024.
    • APA

      Lappicy, P. (2023). Sturm attractors for fully nonlinear parabolic equations. Revista Matematica Complutense, 36( 3), 725-747. doi:10.1007/s13163-022-00435-0
    • NLM

      Lappicy P. Sturm attractors for fully nonlinear parabolic equations [Internet]. Revista Matematica Complutense. 2023 ; 36( 3): 725-747.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s13163-022-00435-0
    • Vancouver

      Lappicy P. Sturm attractors for fully nonlinear parabolic equations [Internet]. Revista Matematica Complutense. 2023 ; 36( 3): 725-747.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s13163-022-00435-0
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA QUALITATIVA, SISTEMAS DIFERENCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRAUN, Francisco e FERNANDES, Filipe. On Reeb components of nonsingular polynomial differential systems on the real plane. Journal of Differential Equations, v. 320, p. 469-478, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2022.03.002. Acesso em: 31 out. 2024.
    • APA

      Braun, F., & Fernandes, F. (2022). On Reeb components of nonsingular polynomial differential systems on the real plane. Journal of Differential Equations, 320, 469-478. doi:10.1016/j.jde.2022.03.002
    • NLM

      Braun F, Fernandes F. On Reeb components of nonsingular polynomial differential systems on the real plane [Internet]. Journal of Differential Equations. 2022 ; 320 469-478.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.jde.2022.03.002
    • Vancouver

      Braun F, Fernandes F. On Reeb components of nonsingular polynomial differential systems on the real plane [Internet]. Journal of Differential Equations. 2022 ; 320 469-478.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.jde.2022.03.002
  • Source: Bulletin of the Brazilian Mathematical Society : New Series. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, NÚMEROS COMPLEXOS, TEORIA ERGÓDICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ESTEVEZ, Gabriela e SMANIA, Daniel e YAMPOLSKY, Michael. Renormalization of analytic multicritical circle maps with bounded type rotation numbers. Bulletin of the Brazilian Mathematical Society : New Series, v. 53, n. 3, p. Se 2022, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00574-022-00295-8. Acesso em: 31 out. 2024.
    • APA

      Estevez, G., Smania, D., & Yampolsky, M. (2022). Renormalization of analytic multicritical circle maps with bounded type rotation numbers. Bulletin of the Brazilian Mathematical Society : New Series, 53( 3), Se 2022. doi:10.1007/s00574-022-00295-8
    • NLM

      Estevez G, Smania D, Yampolsky M. Renormalization of analytic multicritical circle maps with bounded type rotation numbers [Internet]. Bulletin of the Brazilian Mathematical Society : New Series. 2022 ; 53( 3): Se 2022.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00574-022-00295-8
    • Vancouver

      Estevez G, Smania D, Yampolsky M. Renormalization of analytic multicritical circle maps with bounded type rotation numbers [Internet]. Bulletin of the Brazilian Mathematical Society : New Series. 2022 ; 53( 3): Se 2022.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00574-022-00295-8
  • Source: Mathematische Zeitschrift. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, DIFEOMORFISMOS, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROCHA, Joás Elias dos Santos e TAHZIBI, Ali. On the number of ergodic measures of maximal entropy for partially hyperbolic diffeomorphisms with compact center leaves. Mathematische Zeitschrift, v. 301, n. 1, p. 471-484, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00209-021-02925-1. Acesso em: 31 out. 2024.
    • APA

      Rocha, J. E. dos S., & Tahzibi, A. (2022). On the number of ergodic measures of maximal entropy for partially hyperbolic diffeomorphisms with compact center leaves. Mathematische Zeitschrift, 301( 1), 471-484. doi:10.1007/s00209-021-02925-1
    • NLM

      Rocha JE dos S, Tahzibi A. On the number of ergodic measures of maximal entropy for partially hyperbolic diffeomorphisms with compact center leaves [Internet]. Mathematische Zeitschrift. 2022 ; 301( 1): 471-484.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00209-021-02925-1
    • Vancouver

      Rocha JE dos S, Tahzibi A. On the number of ergodic measures of maximal entropy for partially hyperbolic diffeomorphisms with compact center leaves [Internet]. Mathematische Zeitschrift. 2022 ; 301( 1): 471-484.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00209-021-02925-1
  • Source: Annales Scientifiques de l'École Normale Supérieure. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, DIFEOMORFISMOS, DINÂMICA DE FOLHEAÇÕES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BUZZI, Jérôme e FISHER, Todd e TAHZIBI, Ali. A dichotomy for measures of maximal entropy near time-one maps of transitive Anosov flows. Annales Scientifiques de l'École Normale Supérieure, v. 55, n. 4, p. 969-1002, 2022Tradução . . Disponível em: https://doi.org/10.24033/asens.2511. Acesso em: 31 out. 2024.
    • APA

      Buzzi, J., Fisher, T., & Tahzibi, A. (2022). A dichotomy for measures of maximal entropy near time-one maps of transitive Anosov flows. Annales Scientifiques de l'École Normale Supérieure, 55( 4), 969-1002. doi:10.24033/asens.2511
    • NLM

      Buzzi J, Fisher T, Tahzibi A. A dichotomy for measures of maximal entropy near time-one maps of transitive Anosov flows [Internet]. Annales Scientifiques de l'École Normale Supérieure. 2022 ; 55( 4): 969-1002.[citado 2024 out. 31 ] Available from: https://doi.org/10.24033/asens.2511
    • Vancouver

      Buzzi J, Fisher T, Tahzibi A. A dichotomy for measures of maximal entropy near time-one maps of transitive Anosov flows [Internet]. Annales Scientifiques de l'École Normale Supérieure. 2022 ; 55( 4): 969-1002.[citado 2024 out. 31 ] Available from: https://doi.org/10.24033/asens.2511
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, TEORIA DA BIFURCAÇÃO, SISTEMAS DINÂMICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ITIKAWA, Jackson e OLIVEIRA, Regilene Delazari dos Santos e TORREGROSA, Joan. First-order perturbation for multi-parameter center families. Journal of Differential Equations, v. 309, p. 291-310, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.11.035. Acesso em: 31 out. 2024.
    • APA

      Itikawa, J., Oliveira, R. D. dos S., & Torregrosa, J. (2022). First-order perturbation for multi-parameter center families. Journal of Differential Equations, 309, 291-310. doi:10.1016/j.jde.2021.11.035
    • NLM

      Itikawa J, Oliveira RD dos S, Torregrosa J. First-order perturbation for multi-parameter center families [Internet]. Journal of Differential Equations. 2022 ; 309 291-310.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.jde.2021.11.035
    • Vancouver

      Itikawa J, Oliveira RD dos S, Torregrosa J. First-order perturbation for multi-parameter center families [Internet]. Journal of Differential Equations. 2022 ; 309 291-310.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.jde.2021.11.035
  • Source: Nonlinear Dynamics. Unidade: ICMC

    Subjects: REDES COMPLEXAS, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      QIANG, Li et al. Effects of structural modifications on cluster synchronization patterns. Nonlinear Dynamics, v. 108, n. 4, p. 3529-3541, 2022Tradução . . Disponível em: https://doi.org/10.1007/s11071-022-07383-w. Acesso em: 31 out. 2024.
    • APA

      Qiang, L., Peron, T., Stankovski, T., & Peng, J. (2022). Effects of structural modifications on cluster synchronization patterns. Nonlinear Dynamics, 108( 4), 3529-3541. doi:10.1007/s11071-022-07383-w
    • NLM

      Qiang L, Peron T, Stankovski T, Peng J. Effects of structural modifications on cluster synchronization patterns [Internet]. Nonlinear Dynamics. 2022 ; 108( 4): 3529-3541.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s11071-022-07383-w
    • Vancouver

      Qiang L, Peron T, Stankovski T, Peng J. Effects of structural modifications on cluster synchronization patterns [Internet]. Nonlinear Dynamics. 2022 ; 108( 4): 3529-3541.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s11071-022-07383-w
  • Source: Nonlinearity. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRACHT, Sören von der e NIJHOUT, Eddie e RINK, Bob. Amplified steady state bifurcations in feedforward networks. Nonlinearity, v. 35, n. 4, p. 2073-2120, 2022Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ac5463. Acesso em: 31 out. 2024.
    • APA

      Gracht, S. von der, Nijhout, E., & Rink, B. (2022). Amplified steady state bifurcations in feedforward networks. Nonlinearity, 35( 4), 2073-2120. doi:10.1088/1361-6544/ac5463
    • NLM

      Gracht S von der, Nijhout E, Rink B. Amplified steady state bifurcations in feedforward networks [Internet]. Nonlinearity. 2022 ; 35( 4): 2073-2120.[citado 2024 out. 31 ] Available from: https://doi.org/10.1088/1361-6544/ac5463
    • Vancouver

      Gracht S von der, Nijhout E, Rink B. Amplified steady state bifurcations in feedforward networks [Internet]. Nonlinearity. 2022 ; 35( 4): 2073-2120.[citado 2024 out. 31 ] Available from: https://doi.org/10.1088/1361-6544/ac5463
  • Source: Bulletin of Mathematical Sciences. Unidade: ICMC

    Subjects: EQUAÇÕES INTEGRAIS DE VOLTERRA-STIELTJES, INTEGRAL DE PERRON, SISTEMAS DINÂMICOS, CONTROLABILIDADE

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Fernanda Andrade da e FEDERSON, Marcia e TOON, Eduard. Existence, uniqueness, variation-of-constant formula and controllability for linear dynamic equations with Perron Δ-integrals. Bulletin of Mathematical Sciences, v. 12, n. 3, p. 2150011-1-2150011-47, 2022Tradução . . Disponível em: https://doi.org/10.1142/S1664360721500119. Acesso em: 31 out. 2024.
    • APA

      Silva, F. A. da, Federson, M., & Toon, E. (2022). Existence, uniqueness, variation-of-constant formula and controllability for linear dynamic equations with Perron Δ-integrals. Bulletin of Mathematical Sciences, 12( 3), 2150011-1-2150011-47. doi:10.1142/S1664360721500119
    • NLM

      Silva FA da, Federson M, Toon E. Existence, uniqueness, variation-of-constant formula and controllability for linear dynamic equations with Perron Δ-integrals [Internet]. Bulletin of Mathematical Sciences. 2022 ; 12( 3): 2150011-1-2150011-47.[citado 2024 out. 31 ] Available from: https://doi.org/10.1142/S1664360721500119
    • Vancouver

      Silva FA da, Federson M, Toon E. Existence, uniqueness, variation-of-constant formula and controllability for linear dynamic equations with Perron Δ-integrals [Internet]. Bulletin of Mathematical Sciences. 2022 ; 12( 3): 2150011-1-2150011-47.[citado 2024 out. 31 ] Available from: https://doi.org/10.1142/S1664360721500119
  • Source: Proceedings of the Royal Society of Edinburgh. Unidade: ICMC

    Subjects: TEORIA DO ÍNDICE, SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. Conley index for manifold-valued retarded functional differential equations without uniqueness of solutions. Proceedings of the Royal Society of Edinburgh, v. 152, n. 2, p. 428-449, 2022Tradução . . Disponível em: https://doi.org/10.1017/prm.2021.15. Acesso em: 31 out. 2024.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2022). Conley index for manifold-valued retarded functional differential equations without uniqueness of solutions. Proceedings of the Royal Society of Edinburgh, 152( 2), 428-449. doi:10.1017/prm.2021.15
    • NLM

      Carbinatto M do C, Rybakowski KP. Conley index for manifold-valued retarded functional differential equations without uniqueness of solutions [Internet]. Proceedings of the Royal Society of Edinburgh. 2022 ; 152( 2): 428-449.[citado 2024 out. 31 ] Available from: https://doi.org/10.1017/prm.2021.15
    • Vancouver

      Carbinatto M do C, Rybakowski KP. Conley index for manifold-valued retarded functional differential equations without uniqueness of solutions [Internet]. Proceedings of the Royal Society of Edinburgh. 2022 ; 152( 2): 428-449.[citado 2024 out. 31 ] Available from: https://doi.org/10.1017/prm.2021.15
  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidade: ICMC

    Subjects: REDES COMPLEXAS, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      YE, Jiachen et al. Performance measures after perturbations in the presence of inertia. Communications in Nonlinear Science and Numerical Simulation, v. 97, p. 1-10, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2021.105727. Acesso em: 31 out. 2024.
    • APA

      Ye, J., Peron, T., Lin, W., Kurths, J., & Ji, P. (2021). Performance measures after perturbations in the presence of inertia. Communications in Nonlinear Science and Numerical Simulation, 97, 1-10. doi:10.1016/j.cnsns.2021.105727
    • NLM

      Ye J, Peron T, Lin W, Kurths J, Ji P. Performance measures after perturbations in the presence of inertia [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2021 ; 97 1-10.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.cnsns.2021.105727
    • Vancouver

      Ye J, Peron T, Lin W, Kurths J, Ji P. Performance measures after perturbations in the presence of inertia [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2021 ; 97 1-10.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.cnsns.2021.105727
  • Source: European Journal of Applied Mathematics. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, SISTEMAS DINÂMICOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLIBRE, Jaume e OLIVEIRA, Regilene Delazari dos Santos e ZHAO, Yulin. On the birth and death of algebraic limit cycles in quadratic differential systems. European Journal of Applied Mathematics, v. 32, n. 2, p. 317-336, 2021Tradução . . Disponível em: https://doi.org/10.1017/S0956792520000145. Acesso em: 31 out. 2024.
    • APA

      Llibre, J., Oliveira, R. D. dos S., & Zhao, Y. (2021). On the birth and death of algebraic limit cycles in quadratic differential systems. European Journal of Applied Mathematics, 32( 2), 317-336. doi:10.1017/S0956792520000145
    • NLM

      Llibre J, Oliveira RD dos S, Zhao Y. On the birth and death of algebraic limit cycles in quadratic differential systems [Internet]. European Journal of Applied Mathematics. 2021 ; 32( 2): 317-336.[citado 2024 out. 31 ] Available from: https://doi.org/10.1017/S0956792520000145
    • Vancouver

      Llibre J, Oliveira RD dos S, Zhao Y. On the birth and death of algebraic limit cycles in quadratic differential systems [Internet]. European Journal of Applied Mathematics. 2021 ; 32( 2): 317-336.[citado 2024 out. 31 ] Available from: https://doi.org/10.1017/S0956792520000145
  • Source: Communications in Partial Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM, EQUAÇÕES DIFERENCIAIS PARCIAIS NÃO LINEARES, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, SISTEMAS DINÂMICOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MAIA, Liliane e NORNBERG, Gabrielle e PACELLA, Filomena. A dynamical system approach to a class of radial weighted fully nonlinear equations. Communications in Partial Differential Equations, v. 46, n. 4, p. 573-610, 2021Tradução . . Disponível em: https://doi.org/10.1080/03605302.2020.1849281. Acesso em: 31 out. 2024.
    • APA

      Maia, L., Nornberg, G., & Pacella, F. (2021). A dynamical system approach to a class of radial weighted fully nonlinear equations. Communications in Partial Differential Equations, 46( 4), 573-610. doi:10.1080/03605302.2020.1849281
    • NLM

      Maia L, Nornberg G, Pacella F. A dynamical system approach to a class of radial weighted fully nonlinear equations [Internet]. Communications in Partial Differential Equations. 2021 ; 46( 4): 573-610.[citado 2024 out. 31 ] Available from: https://doi.org/10.1080/03605302.2020.1849281
    • Vancouver

      Maia L, Nornberg G, Pacella F. A dynamical system approach to a class of radial weighted fully nonlinear equations [Internet]. Communications in Partial Differential Equations. 2021 ; 46( 4): 573-610.[citado 2024 out. 31 ] Available from: https://doi.org/10.1080/03605302.2020.1849281

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024