Filtros : "GRAFOS ALEATÓRIOS" "KOHAYAKAWA, YOSHIHARU" Removido: "IEEE Transactions on Network Science and Engineering" Limpar

Filtros



Refine with date range


  • Source: Proceedings. Conference titles: Discrete Mathematics Days. Unidade: IME

    Subjects: COMBINATÓRIA, GRAFOS ALEATÓRIOS

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALVARADO MORALES, José Diego et al. A canonical van der Waerden theorem in random sets. 2024, Anais.. Alcalá de Henares: Universidad de Alcalá, 2024. Disponível em: https://dmd2024.web.uah.es/files/abstracts/paper_31.pdf. Acesso em: 27 nov. 2025.
    • APA

      Alvarado Morales, J. D., Kohayakawa, Y., Morris, P., Mota, G. O., & Ortega, M. (2024). A canonical van der Waerden theorem in random sets. In Proceedings. Alcalá de Henares: Universidad de Alcalá. Recuperado de https://dmd2024.web.uah.es/files/abstracts/paper_31.pdf
    • NLM

      Alvarado Morales JD, Kohayakawa Y, Morris P, Mota GO, Ortega M. A canonical van der Waerden theorem in random sets [Internet]. Proceedings. 2024 ;[citado 2025 nov. 27 ] Available from: https://dmd2024.web.uah.es/files/abstracts/paper_31.pdf
    • Vancouver

      Alvarado Morales JD, Kohayakawa Y, Morris P, Mota GO, Ortega M. A canonical van der Waerden theorem in random sets [Internet]. Proceedings. 2024 ;[citado 2025 nov. 27 ] Available from: https://dmd2024.web.uah.es/files/abstracts/paper_31.pdf
  • Source: RAIRO - Operations Research. Unidade: IME

    Subjects: 2020/16570-4, GRAFOS ALEATÓRIOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARROS, Gabriel Ferreira et al. Directed graphs with lower orientation Ramsey thresholds. RAIRO - Operations Research, v. 58, n. 4, p. 3607-3619, 2024Tradução . . Disponível em: https://doi.org/10.1051/ro/2024090. Acesso em: 27 nov. 2025.
    • APA

      Barros, G. F., Cavalar, B. P., Kohayakawa, Y., Mota, G. O., & Naia, T. (2024). Directed graphs with lower orientation Ramsey thresholds. RAIRO - Operations Research, 58( 4), 3607-3619. doi:10.1051/ro/2024090
    • NLM

      Barros GF, Cavalar BP, Kohayakawa Y, Mota GO, Naia T. Directed graphs with lower orientation Ramsey thresholds [Internet]. RAIRO - Operations Research. 2024 ; 58( 4): 3607-3619.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1051/ro/2024090
    • Vancouver

      Barros GF, Cavalar BP, Kohayakawa Y, Mota GO, Naia T. Directed graphs with lower orientation Ramsey thresholds [Internet]. RAIRO - Operations Research. 2024 ; 58( 4): 3607-3619.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1051/ro/2024090
  • Source: Discrete Mathematics. Unidade: IME

    Subjects: COMBINATÓRIA, GRAFOS ALEATÓRIOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KOHAYAKAWA, Yoshiharu et al. The anti-Ramsey threshold of complete graphs. Discrete Mathematics, v. 346, n. 5, p. 1-12, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.disc.2023.113343. Acesso em: 27 nov. 2025.
    • APA

      Kohayakawa, Y., Mota, G. O., Parczyk, O., & Schnitzer, J. (2023). The anti-Ramsey threshold of complete graphs. Discrete Mathematics, 346( 5), 1-12. doi:10.1016/j.disc.2023.113343
    • NLM

      Kohayakawa Y, Mota GO, Parczyk O, Schnitzer J. The anti-Ramsey threshold of complete graphs [Internet]. Discrete Mathematics. 2023 ; 346( 5): 1-12.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.disc.2023.113343
    • Vancouver

      Kohayakawa Y, Mota GO, Parczyk O, Schnitzer J. The anti-Ramsey threshold of complete graphs [Internet]. Discrete Mathematics. 2023 ; 346( 5): 1-12.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.disc.2023.113343
  • Source: Procedia Computer Science. Conference titles: Latin-American Algorithms, Graphs and Optimization Symposium - LAGOS. Unidade: IME

    Subjects: GRAFOS ALEATÓRIOS, TEORIA DE RAMSEY

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALVARADO MORALES, José Diego et al. A canonical Ramsey theorem with list constraints in random graphs. Procedia Computer Science. Amsterdam: Instituto de Matemática e Estatística, Universidade de São Paulo. Disponível em: https://doi.org/10.1016/j.procs.2023.08.208. Acesso em: 27 nov. 2025. , 2023
    • APA

      Alvarado Morales, J. D., Kohayakawa, Y., Morris, P., & Mota, G. O. (2023). A canonical Ramsey theorem with list constraints in random graphs. Procedia Computer Science. Amsterdam: Instituto de Matemática e Estatística, Universidade de São Paulo. doi:10.1016/j.procs.2023.08.208
    • NLM

      Alvarado Morales JD, Kohayakawa Y, Morris P, Mota GO. A canonical Ramsey theorem with list constraints in random graphs [Internet]. Procedia Computer Science. 2023 ; 223 13-19.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.procs.2023.08.208
    • Vancouver

      Alvarado Morales JD, Kohayakawa Y, Morris P, Mota GO. A canonical Ramsey theorem with list constraints in random graphs [Internet]. Procedia Computer Science. 2023 ; 223 13-19.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.procs.2023.08.208
  • Source: Procedia Computer Science. Conference titles: Latin and American Algorithms, Graphs and Optimization Symposium - LAGOS. Unidade: IME

    Assunto: GRAFOS ALEATÓRIOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALVARADO MORALES, José Diego et al. Resilience for loose Hamilton cycles. Procedia Computer Science. Amsterdam: Instituto de Matemática e Estatística, Universidade de São Paulo. Disponível em: https://doi.org/10.1016/j.procs.2023.08.229. Acesso em: 27 nov. 2025. , 2023
    • APA

      Alvarado Morales, J. D., Kohayakawa, Y., Lang, R., Mota, G. O., & Stagni, H. (2023). Resilience for loose Hamilton cycles. Procedia Computer Science. Amsterdam: Instituto de Matemática e Estatística, Universidade de São Paulo. doi:10.1016/j.procs.2023.08.229
    • NLM

      Alvarado Morales JD, Kohayakawa Y, Lang R, Mota GO, Stagni H. Resilience for loose Hamilton cycles [Internet]. Procedia Computer Science. 2023 ; 223 193-200.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.procs.2023.08.229
    • Vancouver

      Alvarado Morales JD, Kohayakawa Y, Lang R, Mota GO, Stagni H. Resilience for loose Hamilton cycles [Internet]. Procedia Computer Science. 2023 ; 223 193-200.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.procs.2023.08.229
  • Source: Random Structures & Algorithms. Unidade: IME

    Assunto: GRAFOS ALEATÓRIOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CHANG, Yulin et al. Factors in randomly perturbed hypergraphs. Random Structures & Algorithms, v. 60, n. 2, p. 153-165, 2022Tradução . . Disponível em: https://doi.org/10.1002/rsa.21035. Acesso em: 27 nov. 2025.
    • APA

      Chang, Y., Han, J., Kohayakawa, Y., Morris, P., & Mota, G. O. (2022). Factors in randomly perturbed hypergraphs. Random Structures & Algorithms, 60( 2), 153-165. doi:10.1002/rsa.21035
    • NLM

      Chang Y, Han J, Kohayakawa Y, Morris P, Mota GO. Factors in randomly perturbed hypergraphs [Internet]. Random Structures & Algorithms. 2022 ; 60( 2): 153-165.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1002/rsa.21035
    • Vancouver

      Chang Y, Han J, Kohayakawa Y, Morris P, Mota GO. Factors in randomly perturbed hypergraphs [Internet]. Random Structures & Algorithms. 2022 ; 60( 2): 153-165.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1002/rsa.21035
  • Source: SIAM Journal on Discrete Mathematics. Unidade: IME

    Subjects: COMBINATÓRIA, TEORIA DE RAMSEY, GRAFOS ALEATÓRIOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARROS, Gabriel Ferreira et al. Orientation Ramsey thresholds for cycles and cliques. SIAM Journal on Discrete Mathematics, v. 35, n. 4, p. 2844-2857, 2021Tradução . . Disponível em: https://doi.org/10.1137/20M1386463. Acesso em: 27 nov. 2025.
    • APA

      Barros, G. F., Cavalar, B. P., Kohayakawa, Y., & Naia, T. (2021). Orientation Ramsey thresholds for cycles and cliques. SIAM Journal on Discrete Mathematics, 35( 4), 2844-2857. doi:10.1137/20M1386463
    • NLM

      Barros GF, Cavalar BP, Kohayakawa Y, Naia T. Orientation Ramsey thresholds for cycles and cliques [Internet]. SIAM Journal on Discrete Mathematics. 2021 ; 35( 4): 2844-2857.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1137/20M1386463
    • Vancouver

      Barros GF, Cavalar BP, Kohayakawa Y, Naia T. Orientation Ramsey thresholds for cycles and cliques [Internet]. SIAM Journal on Discrete Mathematics. 2021 ; 35( 4): 2844-2857.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1137/20M1386463
  • Source: Extended abstracts. Conference titles: European Conference on Combinatorics, Graph Theory and Applications - EuroComb. Unidade: IME

    Assunto: GRAFOS ALEATÓRIOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOTLER, Fábio Happ e COLUCCI, Lucas e KOHAYAKAWA, Yoshiharu. The mod k chromatic index of random graphs. 2021, Anais.. Cham: Birkhäuser, 2021. Disponível em: https://doi.org/10.1007/978-3-030-83823-2_116. Acesso em: 27 nov. 2025.
    • APA

      Botler, F. H., Colucci, L., & Kohayakawa, Y. (2021). The mod k chromatic index of random graphs. In Extended abstracts. Cham: Birkhäuser. doi:10.1007/978-3-030-83823-2_116
    • NLM

      Botler FH, Colucci L, Kohayakawa Y. The mod k chromatic index of random graphs [Internet]. Extended abstracts. 2021 ;[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/978-3-030-83823-2_116
    • Vancouver

      Botler FH, Colucci L, Kohayakawa Y. The mod k chromatic index of random graphs [Internet]. Extended abstracts. 2021 ;[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/978-3-030-83823-2_116
  • Source: Extended abstracts. Conference titles: European Conference on Combinatorics, Graph Theory and Applications - EuroComb. Unidade: IME

    Subjects: TEORIA DE RAMSEY, GRAFOS ALEATÓRIOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARROS, Gabriel Ferreira et al. Oriented graphs with lower orientation Ramsey thresholds. 2021, Anais.. Cham: Birkhäuser, 2021. Disponível em: https://doi.org/10.1007/978-3-030-83823-2_127. Acesso em: 27 nov. 2025.
    • APA

      Barros, G. F., Cavalar, B. P., Kohayakawa, Y., Mota, G. O., & Naia, T. (2021). Oriented graphs with lower orientation Ramsey thresholds. In Extended abstracts. Cham: Birkhäuser. doi:10.1007/978-3-030-83823-2_127
    • NLM

      Barros GF, Cavalar BP, Kohayakawa Y, Mota GO, Naia T. Oriented graphs with lower orientation Ramsey thresholds [Internet]. Extended abstracts. 2021 ;[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/978-3-030-83823-2_127
    • Vancouver

      Barros GF, Cavalar BP, Kohayakawa Y, Mota GO, Naia T. Oriented graphs with lower orientation Ramsey thresholds [Internet]. Extended abstracts. 2021 ;[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/978-3-030-83823-2_127
  • Source: Procedia Computer Science. Conference titles: Latin and American Algorithms, Graphs and Optimization Symposium - LAGOS. Unidade: IME

    Subjects: TEORIA DOS GRAFOS, GRAFOS ALEATÓRIOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COLLARES, Maurício et al. Constrained colourings of random graphs. Procedia Computer Science. Amsterdam: Instituto de Matemática e Estatística, Universidade de São Paulo. Disponível em: https://doi.org/10.1016/j.procs.2021.11.045. Acesso em: 27 nov. 2025. , 2021
    • APA

      Collares, M., Kohayakawa, Y., Moreira, C. G., & Mota, G. O. (2021). Constrained colourings of random graphs. Procedia Computer Science. Amsterdam: Instituto de Matemática e Estatística, Universidade de São Paulo. doi:10.1016/j.procs.2021.11.045
    • NLM

      Collares M, Kohayakawa Y, Moreira CG, Mota GO. Constrained colourings of random graphs [Internet]. Procedia Computer Science. 2021 ; 195 368-375.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.procs.2021.11.045
    • Vancouver

      Collares M, Kohayakawa Y, Moreira CG, Mota GO. Constrained colourings of random graphs [Internet]. Procedia Computer Science. 2021 ; 195 368-375.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.procs.2021.11.045
  • Source: Random Structures & Algorithms. Unidade: IME

    Assunto: GRAFOS ALEATÓRIOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COLLARES, Maurício et al. Counting restricted orientations of random graphs. Random Structures & Algorithms, v. 56, n. 4, p. 1016-1030, 2020Tradução . . Disponível em: https://doi.org/10.1002/rsa.20904. Acesso em: 27 nov. 2025.
    • APA

      Collares, M., Kohayakawa, Y., Morris, R., & Mota, G. O. (2020). Counting restricted orientations of random graphs. Random Structures & Algorithms, 56( 4), 1016-1030. doi:10.1002/rsa.20904
    • NLM

      Collares M, Kohayakawa Y, Morris R, Mota GO. Counting restricted orientations of random graphs [Internet]. Random Structures & Algorithms. 2020 ; 56( 4): 1016-1030.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1002/rsa.20904
    • Vancouver

      Collares M, Kohayakawa Y, Morris R, Mota GO. Counting restricted orientations of random graphs [Internet]. Random Structures & Algorithms. 2020 ; 56( 4): 1016-1030.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1002/rsa.20904
  • Source: Anais. Conference titles: Encontro de Teoria da Computação - ETC. Unidade: IME

    Subjects: TEORIA DOS GRAFOS, GRAFOS ALEATÓRIOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOTLER, Fábio Happ e COLUCCI, Lucas e KOHAYAKAWA, Yoshiharu. The odd chromatic index of almost all graphs. 2020, Anais.. Porto Alegre: SBC, 2020. Disponível em: https://doi.org/10.5753/etc.2020.11087. Acesso em: 27 nov. 2025.
    • APA

      Botler, F. H., Colucci, L., & Kohayakawa, Y. (2020). The odd chromatic index of almost all graphs. In Anais. Porto Alegre: SBC. doi:10.5753/etc.2020.11087
    • NLM

      Botler FH, Colucci L, Kohayakawa Y. The odd chromatic index of almost all graphs [Internet]. Anais. 2020 ;[citado 2025 nov. 27 ] Available from: https://doi.org/10.5753/etc.2020.11087
    • Vancouver

      Botler FH, Colucci L, Kohayakawa Y. The odd chromatic index of almost all graphs [Internet]. Anais. 2020 ;[citado 2025 nov. 27 ] Available from: https://doi.org/10.5753/etc.2020.11087
  • Source: Random Structures & Algorithms. Unidade: IME

    Subjects: GRAFOS ALEATÓRIOS, MÉTODOS PROBABILÍSTICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KOHAYAKAWA, Yoshiharu e RETTER, Troy e RODL, Vojtech. The size Ramsey number of short subdivisions of bounded degree graphs. Random Structures & Algorithms, v. 54, n. 2, p. 304-339, 2019Tradução . . Disponível em: https://doi.org/10.1002/rsa.20783. Acesso em: 27 nov. 2025.
    • APA

      Kohayakawa, Y., Retter, T., & Rodl, V. (2019). The size Ramsey number of short subdivisions of bounded degree graphs. Random Structures & Algorithms, 54( 2), 304-339. doi:10.1002/rsa.20783
    • NLM

      Kohayakawa Y, Retter T, Rodl V. The size Ramsey number of short subdivisions of bounded degree graphs [Internet]. Random Structures & Algorithms. 2019 ; 54( 2): 304-339.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1002/rsa.20783
    • Vancouver

      Kohayakawa Y, Retter T, Rodl V. The size Ramsey number of short subdivisions of bounded degree graphs [Internet]. Random Structures & Algorithms. 2019 ; 54( 2): 304-339.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1002/rsa.20783
  • Source: Mathematical Proceedings of the Cambridge Philosophical Society. Unidade: IME

    Subjects: GRAFOS ALEATÓRIOS, COMBINATÓRIA PROBABILÍSTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KOHAYAKAWA, Yoshiharu e MOTA, Guilherme Oliveira e SCHACHT, Mathias. Monochromatic trees in random graphs. Mathematical Proceedings of the Cambridge Philosophical Society, v. 166, n. 1, p. 191-208, 2019Tradução . . Disponível em: https://doi.org/10.1017/S0305004117000846. Acesso em: 27 nov. 2025.
    • APA

      Kohayakawa, Y., Mota, G. O., & Schacht, M. (2019). Monochromatic trees in random graphs. Mathematical Proceedings of the Cambridge Philosophical Society, 166( 1), 191-208. doi:10.1017/S0305004117000846
    • NLM

      Kohayakawa Y, Mota GO, Schacht M. Monochromatic trees in random graphs [Internet]. Mathematical Proceedings of the Cambridge Philosophical Society. 2019 ; 166( 1): 191-208.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1017/S0305004117000846
    • Vancouver

      Kohayakawa Y, Mota GO, Schacht M. Monochromatic trees in random graphs [Internet]. Mathematical Proceedings of the Cambridge Philosophical Society. 2019 ; 166( 1): 191-208.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1017/S0305004117000846
  • Source: Random Structures & Algorithms. Unidade: IME

    Assunto: GRAFOS ALEATÓRIOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BÖTTCHER, Julia et al. Universality for bounded degree spanning trees in randomly perturbed graphs. Random Structures & Algorithms, v. 55, n. 4, p. 854-864, 2019Tradução . . Disponível em: https://doi.org/10.1002/rsa.20850. Acesso em: 27 nov. 2025.
    • APA

      Böttcher, J., Han, J., Kohayakawa, Y., Montgomery, R., Parczyk, O., & Person, Y. (2019). Universality for bounded degree spanning trees in randomly perturbed graphs. Random Structures & Algorithms, 55( 4), 854-864. doi:10.1002/rsa.20850
    • NLM

      Böttcher J, Han J, Kohayakawa Y, Montgomery R, Parczyk O, Person Y. Universality for bounded degree spanning trees in randomly perturbed graphs [Internet]. Random Structures & Algorithms. 2019 ; 55( 4): 854-864.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1002/rsa.20850
    • Vancouver

      Böttcher J, Han J, Kohayakawa Y, Montgomery R, Parczyk O, Person Y. Universality for bounded degree spanning trees in randomly perturbed graphs [Internet]. Random Structures & Algorithms. 2019 ; 55( 4): 854-864.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1002/rsa.20850
  • Source: Combinatorics, Probability & Computing. Unidade: IME

    Subjects: COMBINATÓRIA, GRAFOS ALEATÓRIOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALLEN, Peter et al. Triangle-free subgraphs of random graphs. Combinatorics, Probability & Computing, v. 27, n. 2, p. 141-161, 2018Tradução . . Disponível em: https://doi.org/10.1017/S0963548317000219. Acesso em: 27 nov. 2025.
    • APA

      Allen, P., Bottcher, J., Kohayakawa, Y., & Roberts, B. (2018). Triangle-free subgraphs of random graphs. Combinatorics, Probability & Computing, 27( 2), 141-161. doi:10.1017/S0963548317000219
    • NLM

      Allen P, Bottcher J, Kohayakawa Y, Roberts B. Triangle-free subgraphs of random graphs [Internet]. Combinatorics, Probability & Computing. 2018 ; 27( 2): 141-161.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1017/S0963548317000219
    • Vancouver

      Allen P, Bottcher J, Kohayakawa Y, Roberts B. Triangle-free subgraphs of random graphs [Internet]. Combinatorics, Probability & Computing. 2018 ; 27( 2): 141-161.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1017/S0963548317000219
  • Source: Journal of Graph Theory. Unidade: IME

    Subjects: TEORIA DOS GRAFOS, GRAFOS ALEATÓRIOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KOHAYAKAWA, Yoshiharu e KONSTADINIDIS, Pavlos Bahia e MOTA, Guilherme Oliveira. On an anti-Ramsey threshold for sparse graphs with one triangle. Journal of Graph Theory, v. 87, n. 2, p. 176-187, 2018Tradução . . Disponível em: https://doi.org/10.1002/jgt.22150. Acesso em: 27 nov. 2025.
    • APA

      Kohayakawa, Y., Konstadinidis, P. B., & Mota, G. O. (2018). On an anti-Ramsey threshold for sparse graphs with one triangle. Journal of Graph Theory, 87( 2), 176-187. doi:10.1002/jgt.22150
    • NLM

      Kohayakawa Y, Konstadinidis PB, Mota GO. On an anti-Ramsey threshold for sparse graphs with one triangle [Internet]. Journal of Graph Theory. 2018 ; 87( 2): 176-187.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1002/jgt.22150
    • Vancouver

      Kohayakawa Y, Konstadinidis PB, Mota GO. On an anti-Ramsey threshold for sparse graphs with one triangle [Internet]. Journal of Graph Theory. 2018 ; 87( 2): 176-187.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1002/jgt.22150
  • Source: Random Structures & Algorithms. Unidade: IME

    Subjects: TEORIA DOS GRAFOS, COMBINATÓRIA PROBABILÍSTICA, GRAFOS ALEATÓRIOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALLEN, Peter et al. Chromatic thresholds in dense random graphs. Random Structures & Algorithms, v. 51, n. 2, p. 185-214, 2017Tradução . . Disponível em: https://doi.org/10.1002/rsa.20708. Acesso em: 27 nov. 2025.
    • APA

      Allen, P., Böttcher, J., Griffiths, S., Kohayakawa, Y., & Morris, R. (2017). Chromatic thresholds in dense random graphs. Random Structures & Algorithms, 51( 2), 185-214. doi:10.1002/rsa.20708
    • NLM

      Allen P, Böttcher J, Griffiths S, Kohayakawa Y, Morris R. Chromatic thresholds in dense random graphs [Internet]. Random Structures & Algorithms. 2017 ; 51( 2): 185-214.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1002/rsa.20708
    • Vancouver

      Allen P, Böttcher J, Griffiths S, Kohayakawa Y, Morris R. Chromatic thresholds in dense random graphs [Internet]. Random Structures & Algorithms. 2017 ; 51( 2): 185-214.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1002/rsa.20708
  • Source: Random Structures & Algorithms. Unidade: IME

    Subjects: TEORIA DOS GRAFOS, COMBINATÓRIA PROBABILÍSTICA, GRAFOS ALEATÓRIOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALLEN, Peter et al. Chromatic thresholds in sparse random graphs. Random Structures & Algorithms, v. 51, n. 2, p. 215–236, 2017Tradução . . Disponível em: https://doi.org/10.1002/rsa.20709. Acesso em: 27 nov. 2025.
    • APA

      Allen, P., Böttcher, J., Griffiths, S., Kohayakawa, Y., & Morris, R. (2017). Chromatic thresholds in sparse random graphs. Random Structures & Algorithms, 51( 2), 215–236. doi:10.1002/rsa.20709
    • NLM

      Allen P, Böttcher J, Griffiths S, Kohayakawa Y, Morris R. Chromatic thresholds in sparse random graphs [Internet]. Random Structures & Algorithms. 2017 ; 51( 2): 215–236.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1002/rsa.20709
    • Vancouver

      Allen P, Böttcher J, Griffiths S, Kohayakawa Y, Morris R. Chromatic thresholds in sparse random graphs [Internet]. Random Structures & Algorithms. 2017 ; 51( 2): 215–236.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1002/rsa.20709
  • Source: Electronic Notes in Discrete Mathematics. Conference titles: European Conference on Combinatorics, Graph Theory and Applications - EUROCOMB'17. Unidade: IME

    Subjects: GRAFOS ALEATÓRIOS, TEORIA DE RAMSEY

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KOHAYAKAWA, Yoshiharu e MOTA, Guilherme Oliveira e SCHACHT, M. Monochromatic trees in random graphs. Electronic Notes in Discrete Mathematics. Amsterdam: Elsevier. Disponível em: https://doi.org/10.1016/j.endm.2017.07.033. Acesso em: 27 nov. 2025. , 2017
    • APA

      Kohayakawa, Y., Mota, G. O., & Schacht, M. (2017). Monochromatic trees in random graphs. Electronic Notes in Discrete Mathematics. Amsterdam: Elsevier. doi:10.1016/j.endm.2017.07.033
    • NLM

      Kohayakawa Y, Mota GO, Schacht M. Monochromatic trees in random graphs [Internet]. Electronic Notes in Discrete Mathematics. 2017 ; 61 759-764.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.endm.2017.07.033
    • Vancouver

      Kohayakawa Y, Mota GO, Schacht M. Monochromatic trees in random graphs [Internet]. Electronic Notes in Discrete Mathematics. 2017 ; 61 759-764.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.endm.2017.07.033

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025