ORIENTATION RAMSEY THRESHOLDS FOR CYCLES AND CLIQUES*

GABRIEL FERREIRA BARROS[†], BRUNO PASQUALOTTO CAVALAR[‡], YOSHIHARU KOHAYAKAWA[†], AND TÁSSIO NAIA[†]

Abstract. If G is a graph and \vec{H} is an oriented graph, we write $G \to \vec{H}$ to say that every orientation of the edges of G contains \vec{H} as a subdigraph. We consider the case in which G is the binomial random graph G(n,p), establishing the threshold $p_{\vec{H}} = p_{\vec{H}}(n)$ for the property $G(n,p) \to \vec{H}$ for the cases in which \vec{H} is an acyclic orientation of a complete graph or of a cycle.

Key words. Ramsey, threshold, random graphs, orientation

AMS subject classifications. 05D10, 05C80, 05C20

DOI. 10.1137/20M1386463

1. A Ramsey-type property. For each (undirected) graph G and oriented graph \vec{H} , we write $G \to \vec{H}$ to mean that every orientation of G contains a copy of \vec{H} ; the orientation Ramsey number $\vec{R}(\vec{H})$ is $\inf\{n:K_n\to\vec{H}\}$. Note that every graph G admits an acyclic orientation, and hence $G \not\to \vec{H}$ if \vec{H} contains a directed cycle; moreover, since large tournaments contain large transitive subtournaments, $\vec{R}(\vec{H}) < \infty$ if \vec{H} contains no directed cycles. The orientation Ramsey number has been investigated in a number of articles [31, 32, 14, 8, 34, 23, 33, 15, 24, 25, 26, 16, 13, 21, 22, 27, 12] among others, most of which concern a conjecture of Sumner [34]. Sumner's universal tournament conjecture states that $\vec{R}(\vec{T}) \leq 2e(\vec{T})$ for every oriented tree \vec{T} ; this has been confirmed for all sufficiently large trees by Kühn, Mycroft, and Osthus [22, 21]; see also [1, 28].

Thresholds. Thresholds for Ramsey-type properties are widely studied as well (see, e.g., [17, 29] and the many references therein). We call $p_{\vec{H}} = p_{\vec{H}}(n)$ a threshold for $G(n,p) \to \vec{H}$ if

$$\lim_{n \to \infty} \mathbb{P} \big[G(n, p) \to \vec{H} \big] = \begin{cases} 0 & \text{if } p \ll p_{\vec{H}}, \\ 1 & \text{if } p \gg p_{\vec{H}}, \end{cases}$$

where $a \ll b$ (or, equivalently, $b \gg a$) means $\lim_{n\to\infty} a_n/b_n = 0$. As is customary, we speak of "the threshold $p_{\vec{H}}$," since $p_{\vec{H}}$ is unique within constant factors. If \vec{H} is acyclic, then the property $G(n,p)\to \vec{H}$ is nontrivial and monotone, and hence [3] it has a threshold $p_{\vec{H}}=p_{\vec{H}}(n)$. An upper bound for $p_{\vec{H}}=p_{\vec{H}}(n)$ involving the so-called

^{*}Received by the editors December 16, 2020; accepted for publication (in revised form) July 27, 2021; published electronically November 29, 2021.

https://doi.org/10.1137/20M1386463

Funding: This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brasil (CAPES), Finance Code 001. The second author received funding through FAPESP 2018/05557-7. The third author was supported by CNPq (311412/2018-1, 423833/2018-9) and by FAPESP (2018/04876-1, 2019/13364-7). The fourth author was supported through FAPESP grants 2019/04 375-5, 2018/04876-1, and 2019/13364-7.

[†]Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil (gbarros@ime.usp.br, yoshi@ime.usp.br, tassio@ime.usp.br).

[‡]Department of Computer Science, University of Warwick, Coventry CV4 7AL, United Kingdom (bruno.pasqualotto-cavalar@warwick.ac.uk).

maximum 2-density of \vec{H} is proved in [7], following methods in [30]. For any graph or oriented graph G, the maximum density and (when $v(G) \geq 3$) the maximum 2-density of G are, respectively,

$$m(G) := \max_{\substack{J \subseteq G \\ v(J) \ge 1}} \frac{e(J)}{v(J)} \quad \text{and} \quad m_2(G) := \max_{\substack{J \subseteq G \\ v(J) \ge 3}} \frac{e(J) - 1}{v(J) - 2}.$$

THEOREM 1.1 (see [7]). Let \vec{H} be an acyclically oriented graph. There exists a constant $C = C(\vec{H})$ such that if $p \geq C n^{-1/m_2(\vec{H})}$, then $\mathbb{P}[G(n,p) \to \vec{H}] \to 1$ as $n \to \infty$.

We remark in passing that the regularity method can be used to give an alternative proof for Theorem 1.1 (such a proof would combine ideas from [17, section 8.5] and, say, [10]).

2. Contribution. We establish the orientation Ramsey threshold for all acyclic orientations of the complete graph K_t and cycle C_t , for each $t \geq 3$, as well as for certain oriented bipartite graphs. We call a digraph \vec{H} anti-directed if each vertex in \vec{H} has either no inneighbours or no outneighbors (so \vec{G} is bipartite and all arcs point to the same part). We call a graph H strictly 2-balanced if $v(H) \geq 3$ and the only subgraph of H attaining its maximum 2-density is H itself (i.e., $(e(J)-1)/(v(J)-2) < m_2(H)$ for each proper subgraph $J \subseteq H$ with $v(J) \geq 3$).

THEOREM 2.1. If \vec{H} is an acyclic orientation of K_t or C_t , then

$$p_{\vec{H}}(n) = \begin{cases} n^{-1/m(K_4)} & \text{if } t = 3, \\ n^{-1/m_2(\vec{H})} & \text{if } t \ge 4 \end{cases}$$

is the threshold for $G(n,p) \to \vec{H}$. Moreover, if \vec{H} is an anti-directed orientation of a strictly 2-balanced graph H such that $\delta(H) \geq 2$ and $m_2(H) - \lfloor m_2(H) \rfloor \leq 1/2$, then

$$p_{\vec{H}}(n) = n^{-1/m_2(\vec{H})}$$

is the threshold for $G(n,p) \to \vec{H}$.

The fact that the case t=3 is "different" from the $t\geq 4$ cases suggests that the problem of determining $p_{\vec{H}}=p_{\vec{H}}(n)$ for general \vec{H} may be hard. Indeed, the t=3 case can be used to produce other \vec{H} for which $p_{\vec{H}}\ll n^{-1/m_2(\vec{H})}$; see section 7 for further comments in this direction. A similar phenomenon has been observed in the context of a different Ramsey type property [18, 20].

In view of Theorem 1.1, to prove Theorem 2.1 (except for the case in which \vec{H} is an orientation of K_3), it suffices to prove the so called 0-statement, that is, it is enough to show that if $p \ll n^{-1/m_2(\vec{H})}$, then $G(n,p) \to \vec{H}$ holds with vanishing probability. Our proof of this 0-statement uses recent advances in the study of Ramsey-type thresholds: a framework developed by Nenadov et al. [29] (outlined below) and structural results of Barros et al. [2].

We need only a simplified version of the results in [29] (see Definitions 10 and 11 in [29]). Let G and H be graphs, where $\delta(H) > 1$. An edge $e \in E(G)$ is H-closed if e belongs to at least two copies of H in G. A copy of H in G is H-closed if at least three of its edges are H-closed, and G is H-closed if all vertices and edges of G lie in H-closed copies of H. Finally, G is an H-block if G is H-closed and for each

proper nonempty subset $E' \subsetneq E(G)$ there exists a copy H' of H in G such that $E(H') \cap E' \neq \emptyset$ and $E(H') \setminus E' \neq \emptyset$.

THEOREM 2.2 (see [29, Corollary 13]). Let H be a strictly 2-balanced graph with at least 3 edges such that H is not a matching. If $p \ll n^{-1/m_2(H)}$, then with high probability every H-block F of G(n,p) satisfies $m(F) < m_2(H)$.

Since complete graphs and cycles are strictly 2-balanced, Theorem 2.2 reduces the proof of the 0-statement in Theorem 2.1, except in the case t=3, to showing that $G \not\to \vec{H}$ for every graph G whose H-blocks have maximum density strictly below $m_2(H)$. This is achieved for cycles using results from [2], whereas for tournaments and anti-directed graphs, as well as for the case t=3 of Theorem 2.1 we use ad hoc methods (see Theorems 4.1, 5.1, and 5.2). Theorem 2.1 is proved in section 6.

Remark. Other Ramsey-type properties for directed graphs include requiring copies to be induced [9, 19, 4] and allowing colorings plus orientations [5, 6].

3. Auxiliary definitions and results. We use standard notation (see, e.g., [17, 11]). A k-path is a path with k vertices; k-cycles are defined similarly. A directed k-path is an oriented path $v_1 \to \cdots \to v_k$. A directed k-cycle is oriented as $v_1 \to \cdots \to v_k \to v_1$. Let \vec{G} be an oriented graph. A maximal directed path in \vec{G} is called a block. A path or block is long if it has at least 3 edges. A graph G is k-degenerate if for all $J \subseteq G$ the minimum degree $\delta(J)$ is at most k. We use the following simple fact.

Lemma 3.1. Every graph G with at least one vertex is 2m(G)-degenerate.

Let G and H be graphs, and let \vec{H} be an orientation of H. We denote by $\mathcal{C}_H(G)$ the edge intersection graph of H in G, whose vertices correspond to copies of H in G and whose edges join distinct copies which share a common edge in G. An H-component is a subgraph of G formed by the union of all copies of H in some connected component of $\mathcal{C}_H(G)$. Note that $G \not\to \vec{H}$ if and only if each H-component of G admits an \vec{H} -free orientation. Let G and G be graphs, and let G be an G-component of G. If G is an arbitrary copy of G in G then there exists a sequence G in G in G with the following property. For each G in G and G in G in

Let G be a graph, and suppose $E \subseteq E(G)$. We write G[E] for the subgraph of G consisting of the edges in E and the vertices in G which are incident with those edges.

LEMMA 3.2 (see [29, Lemma 14]). Let G and H be graphs. If G is H-closed, then E(G) admits a partition $\{E_1, \ldots, E_k\}$ such that $G[E_1], \ldots, G[E_k]$ are H-blocks and each copy of H in G lies entirely in one of these H-blocks.

Let \vec{H} be an orientation of a graph H. We say \vec{H} is 2-Ramsey-avoidable if for all $e, f \in E(H)$, every orientation of e, f can be extended to an \vec{H} -free orientation of H.

Remark 3.3. Let $k \geq 4$. If \vec{H} is either an orientation of C_k , an acyclic tournament of order k, or an anti-directed orientation of a graph H with $\delta(H) > 1$, then \vec{H} is 2-Ramsey-avoidable.

Proof. Let H be the underlying graph of \vec{H} . In each of the following cases, let $e, f \in E(H)$ be chosen and oriented arbitrarily; it suffices to complete an \vec{H} -free orientation of H.

Suppose \vec{H} is an orientation of C_k . Note that we can complete the orientation of e, f to orientations \vec{C}_1, \vec{C}_2 of C_k such that \vec{C}_1 has a block of length at least $k-1 \geq 3$ and \vec{C}_2 has no long block. If \vec{H} has a block of length at least k-1, then we pick \vec{C}_2 ; else we pick \vec{C}_1 .

If \vec{H} is an acyclic orientation of K_k , we complete the orientation so that it contains a directed triangle (some triangle in H has at most one edge already oriented).

In the remaining case (anti-directed graph), we complete the orientation of H forming a directed 3-path (since $k \geq 4$, some $v \in V(H)$ is incident with precisely one of e, f, while $\delta(H) > 1$ implies some other edge incident with v has not been oriented).

Remark 3.3 will be used with the next lemma and Theorem 2.2 to establish our main results.

LEMMA 3.4. Let G be a graph, and let \vec{H} be 2-Ramsey-avoidable. If $B \not\to \vec{H}$ for each H-block B of G, then $G \not\to \vec{H}$.

Proof. Let H be the underlying graph of \vec{H} . To show that G admits an \vec{H} -free orientation, we may assume each edge of G lies in a copy of H (the orientation of other edges is irrelevant).

Let $G_0 = G$ and, for each $i = 1, 2, \ldots$ proceed as follows. If G_{i-1} is H-closed, then stop, set m := i-1 and $F := G_m$. Otherwise, some copy F_i of H in G_{i-1} has at most two H-closed edges in G_{i-1} . Form G_i by deleting from G_{i-1} each non-H-closed edge of F_i and then each isolated vertex. Note that $G_{i-1} = G_i \cup F_i$ and that each $e \in E(G_i)$ lies in some copy of H.

Note that F is H-closed. By Lemma 3.2, F can be partitioned into a collection \mathcal{B} of edge-disjoint H-blocks such that each copy of H in F lies entirely in some $B \in \mathcal{B}$. By assumption, $B \not\to \vec{H}$ for each $B \in \mathcal{B}$, so F admits an \vec{H} -free orientation \vec{F} (the disjoint union of \vec{H} -free orientations of each $B \in \mathcal{B}$).

Finally, we extend $\vec{G}_m := \vec{F}$ to an \vec{H} -free orientation \vec{G}_0 of G. For each i, from m to 1, let \vec{G}_{i-1} extend \vec{G}_i by orienting the edges $E(F_i) \setminus E(G_i)$ so that F_i is \vec{H} -free (this is possible because \vec{H} is 2-Ramsey-avoidable). Clearly, no copy of H in G induces \vec{H} in \vec{G} , so $G \not\to \vec{H}$.

4. Transitive triangles. Let TT_3 be the transitive triangle. In this section we show that the upper bound for $p_{TT_3}(n)$ given in Theorem 1.1 is not tight.

Theorem 4.1. The threshold for $G(n,p) \to TT_3$ is $p_{TT_3}(n) = n^{-1/m(K_4)}$.

Let W_5 be the wheel graph obtained from C_4 by adding a new vertex joined to all others. We prove the 0-statement of Theorem 4.1 using a structural property of K_3 -components.

PROPOSITION 4.2. If G is a K_3 -component with $uw, vw \in E(G)$ and $uv \notin E(G)$, then there exists $J \subseteq G$ such that either v(J) = 6 and e(J) = 9 or J+uv is isomorphic to K_4 or W_5 .

We write $F \simeq G$ to mean that the graphs F and G are isomorphic.

Proof. Let $F_1 \cdots F_s$ be a shortest path in $\mathcal{C}_{K_3}(G)$ such that $uw \in E(F_1)$ and $vw \in E(F_s)$. It suffices to show the following.

- If s = 2, then $J := F_1 \cup F_2$ satisfies $J + uv \simeq K_4$.
- If s = 3, then $J := F_1 \cup F_2 \cup F_3$ satisfies $J + uv \simeq W_5$.
- If $s \geq 4$, then $J := F_1 \cup F_2 \cup F_3 \cup F_4$ satisfies v(J) = 6 and e(J) = 9.

It is simple to check that the following hold by the choice of $F_1 \cdots F_s$.

- (i) $|E(F_i) \cap E(F_{i+1})| = 1$ for all $i \in [s-1]$;
- (ii) $|E(F_{i+1}) \cap \bigcup_{j \in [i]} E(F_j)| = 1$ for each $i \in [s-1]$; and
- (iii) each $e \in E(G)$ belongs to at most two triangles in $F_1 \cup \cdots \cup F_s$.

The statement for s=2 follows by item (i) since $F_1 \simeq K_3$. If s=3, then v(J)=5 (by items (i) and (ii)), so $J+uv\simeq W_5$. Again by item (i), for each $i\in[s-1]$ we have $|V(F_{i+1})\setminus\bigcup_{j\in[i]}V(F_j)|\leq 1$, so $v(F_1\cup\cdots\cup F_s)\leq s+2$. Moreover, item (ii) implies $e(F_1\cup\cdots\cup F_i)=2i+1$ for each $i\in[s]$. If $s\geq 4$, then e(J)=9. Clearly $1\leq i\leq s$ (by items in $i\leq s$) so otherwise there exists $i\leq s$ (contradicting item (iii).

Let (H_1, \ldots, H_t) be a K_3 -component. For each $i \in [t-1]$, either (A) there are two new edges in H_{i+1} and one new vertex in H_{i+1} ; (B) there are two new edges in H_{i+1} and $V(H_{i+1}) = V(H_i)$; or (C) there is exactly one new edge in H_{i+1} and $V(H_{i+1}) = V(H_i)$. A graph H is AB-constructible if no construction sequence of a K_3 -component of H contains a step of type (C).

PROPOSITION 4.3. If a graph H is AB-constructible, then $H \not\to TT_3$.

Proof. We may assume that H is itself a single K_3 -component (H_1, \ldots, H_t) , as edges which do not belong to a copy of K_3 in H can be arbitrarily oriented and distinct K_3 -components may be independently oriented. First note that, at each step, exactly one new copy of K_3 is added. This is clearly true for steps of type (A). Moreover, it is easy to see that if $H_{\alpha+1}$ is created by a step of type (B) and the new edges create two distinct copies of K_3 in $H_{\alpha+1}$, then H admits a construction sequence with a step of type (C), a contradiction. We orient H_1 forming a directed triangle and, for each $\alpha \in [t-1]$, orient the two new edges in $H_{\alpha+1}$ so as to form a new directed triangle. The resulting orientation is TT_3 -free.

Our final ingredient is the following classical result (see, e.g., [17]).

Theorem 4.4 (see [17]). Let H be a fixed graph. Then

$$\lim_{n\to\infty}\mathbb{P}[H\subseteq G(n,p)]=\begin{cases} 1 \ \text{if } p\gg n^{-1/m(H)},\\ 0 \ \text{if } p\ll n^{-1/m(H)}. \end{cases}$$

Proof of Theorem 4.1. If $p \gg n^{-2/3}$, then $K_4 \subseteq G(n,p)$ with high probability by Theorem 4.4; hence $G(n,p) \to TT_3$ with high probability (as $K_4 \to TT_3$). Now suppose that $p \ll n^{-2/3}$, and let \mathcal{E} be the event "G(n,p) is not AB-constructible." By Proposition 4.3, it suffices to show that $\mathbb{P}[\mathcal{E}] = o(1)$. Let \mathcal{J} be set of all nonisomorphic graphs of order 6 and size 9. By Proposition 4.2, every K_3 -component of G(n,p) which is not AB-constructible contains either K_4 , W_5 , or some $J \in \mathcal{J}$. Using Markov's inequality, we have

$$\begin{split} \mathbb{P}[\mathcal{E}] &\leq \mathbb{P}[K_4 \subseteq G(n,p)] + \mathbb{P}[W_5 \subseteq G(n,p)] + \sum_{J \in \mathcal{J}} \mathbb{P}[J \subseteq G(n,p)] \\ &\leq \sum_{J \in \{K_4,W_5\} \cup \mathcal{J}} \mathbb{E}\left[\left| \{J' \subseteq G(n,p) : J' \simeq J\} \right| \right] \leq n^4 p^6 + n^5 p^8 + |\mathcal{J}| n^6 p^9. \end{split}$$

Since $p \ll n^{-2/3}$ and $|\mathcal{J}| = \Theta(1)$, we have $\mathbb{P}[\mathcal{E}] = o(1)$.

- **5.** Graphs with low maximum 2-density. The following sections show that $G \not\to \vec{H}$ for some classes of oriented graphs when \vec{H} has at least four vertices and $m(G) < m_2(\vec{H})$.
- **5.1. Transitive tournaments.** We denote a tournament on k vertices by T_k , writing TT_k if it is transitive.

THEOREM 5.1. If $k \geq 4$ and G is a graph with $m(G) < m_2(K_k)$, then $G \not\to TT_k$.

Proof. The proof is by induction on n := v(G). The case n < 4 is trivial. Assume $n \ge 4$ and that $G' \not\to \mathrm{TT}_k$ whenever $m(G') < m_2(K_k)$ and v(G') < n. By Lemma 3.1, $\deg_G(u) \le k$ for some $u \in V(G)$. Let G' = G - u, so $m(G') < m_2(K_k)$ and G' admits a TT_k -free orientation \vec{G} . We shall extend \vec{G} to an orientation of G such that each T_k containing u has a directed cycle.

We may assume that u lies in some copy of K_k , say K; so $\deg(u) \geq k-1$. If K is the only copy of K_k containing u, then choose two vertices $v, w \in V(K-u)$ and orient the edges uv and uw so that $\{u, v, w\}$ induces a directed triangle. Otherwise let K' be some K_k containing u other than K. Hence we must have $\deg(u) = k$. Let v be the unique vertex in $V(K) \setminus V(K')$, and w be the unique vertex in $V(K') \setminus V(K)$. Since $k-2 \geq 2$, there are at least two vertices x and y in $V(K \cap K') \setminus \{u\}$. Orient the edges uv, ux, uw, and uy so that each of $\{u, v, x\}$ and $\{u, w, y\}$ induces a directed triangle. Since every K_k containing u has at least three vertices in $\{v, w, x, y\}$, the partial orientation of each K_k contains a directed cycle. Any remaining unoriented edge may be arbitrarily oriented.

5.2. Anti-directed digraphs. We next consider anti-directed orientations of bipartite graphs such as $K_{t,t}$ and C_{2t} .

THEOREM 5.2. Let G and H be graphs, where $\delta(H) \geq 2$. If \vec{H} is an anti-directed orientation of H and $m(G) < \delta(H) - 1/2$, then $G \neq \vec{H}$.

Proof. We proceed by induction on v(G). If $v(G) \leq 2$, then $G \not\to \vec{H}$. Let $\delta := \delta(H)$. By Lemma 3.1, there exists $v \in V(G)$ with $\deg(v) = \delta(G) \leq 2\delta - 2$. By induction, $G - v \not\to \vec{H}$. Fix an \vec{H} -free orientation of G - v, and orient $\lfloor \delta(G)/2 \rfloor$ edges incident with v toward v and the remaining $\lceil \delta(G)/2 \rceil$ edges away from v. Note that any copy of H in G containing v necessarily has two edges incident with v oriented in opposite directions, since $\delta(H) \geq 2$ and $\lceil \delta(G)/2 \rceil \leq \delta(H) - 1$.

COROLLARY 5.3. Let \vec{H} be an anti-directed orientation of a graph H, where H is strictly 2-balanced, $\delta(H) \geq 2$ and $m_2(H) - \lfloor m_2(H) \rfloor \leq 1/2$. For every graph G, if $m(G) < m_2(H)$, then $G \not\to \vec{H}$.

Proof. We have (e(H-u)-1)/(v(H-u)-2) < (e(H)-1)/(v(H)-2) for all $u \in V(H)$, since H is strictly 2-balanced. It is easy to check that $m_2(H) < \delta(H)$, so $\lfloor m_2(H) \rfloor + 1 \le \delta(H)$. Since $m(G) < m_2(H) \le \lfloor m_2(H) \rfloor + 1/2 \le \delta(H) - 1/2$, we can apply Theorem 5.2.

5.3. Cycles. We now consider orientations of ℓ -cycles, where $\ell \geq 4$. The main results are Theorems 5.8 and 5.10, which deal with the cases $\ell = 4$ and $\ell \geq 5$, respectively. (We also include a simple proof for the case $\ell \geq 7$; see Theorem 5.5.) Recall that a block is *long* if it has at least 3 edges.

LEMMA 5.4. Let \vec{C} be an oriented cycle with a long block. If G is a graph and $m(G) < m_2(\vec{C})$, then $G \not\to \vec{C}$.

Proof. Note that $v(\vec{C}) \geq 4$, so $m_2(\vec{C}) \leq m_2(C_4) = 3/2$. By Lemma 3.1, G is 2-degenerate; hence $\chi(G) \leq 3$. Fix a proper coloring $c: V(G) \to \{1, 2, 3\}$, and orient each edge towards its endvertex with the largest color. This orientation contains no long block, so $G \nrightarrow \vec{C}$.

While the next result is superseded by Theorem 5.10, its proof is much simpler.

THEOREM 5.5. Let \vec{C} be an orientation of C_{ℓ} , where $\ell \geq 7$. If G is a graph and $m(G) < m_2(\vec{C})$, then $G \not\to \vec{C}$.

Proof. Let $\ell = e(\vec{C})$. If \vec{C} contains a long block, then by Lemma 5.4 the theorem holds; hence, for the remainder of the proof, we may assume that the longest block of \vec{C} has length at most 2.

Suppose, looking for a contradiction, that the statement is false. Without loss of generality, let G be a minimal counterexample (with respect to the subgraph relation). That is, $m(G) < m_2(\vec{C})$, and $G \to \vec{C}$, and $G' \to \vec{C}$ for each proper subgraph $G' \subseteq G$. Let W be the set of vertices in G with degree 2.

If there exists an edge uv joining vertices $u, v \in W$, then (since G is minimal) uv lies in an ℓ -cycle. Moreover, $G \setminus \{u, v\} \not\to \vec{C}$; so there exists an orientation \vec{G} of $G \setminus \{u, v\}$ which avoids \vec{C} . Note that each ℓ -cycle in G is either completely oriented in \vec{G} (while avoiding \vec{C}) or contains the three (not yet oriented) edges incident with either u or v. We extend \vec{G} by orienting these edges so that they form a directed path or cycle. Since, by assumption, the length of any block of \vec{C} is at most two, it follows that \vec{G} is an orientation of G avoiding \vec{C} , a contradiction.

Hence no edge of G lies in W. By the minimality of G, every vertex $v \in V(G)$ lies an ℓ -cycle, so $\delta(G) \geq 2$. Let n := v(G). Since each vertex of W has degree 2,

$$2|W| + 3(n - |W|) \le \sum_{v \in V(G)} d(v) = 2e(G) \le 2m(G)n < 2n\frac{\ell - 1}{\ell - 2}.$$

It follows that $|W| > n(1 - 2/(\ell - 2))$ and

$$2\left(1-\frac{2}{\ell-2}\right)n<2|W|\leq e(G)\leq m(G)n=\left(1+\frac{1}{\ell-2}\right)n,$$

which is a contradiction for $\ell > 7$.

The proofs for smaller cycles use a detailed characterization of the construction sequences of C_{ℓ} -components, which was obtained recently by Barros et al. [2]. We state the first of these results in a slightly modified form (the original has " $\ell \geq 5$ " in place of " $\ell \geq 4$," but the same proof holds).

PROPOSITION 5.6 (see [2, Proposition 7]). Let $\ell \geq 4$ be an integer, G be a graph with $m(G) < m_2(C_\ell)$, and (H_1, \ldots, H_t) be a C_ℓ -component of G. The following holds for every $1 \leq i \leq t-1$. If C is an ℓ -cycle added to H_i to form H_{i+1} , then there exists a labeling $C = u_1u_2 \cdots u_\ell u_1$ such that exactly one of the following occurs, where $2 \leq j \leq \ell$ and $3 \leq k \leq \ell-1$.

- (A_i) $u_1u_2\cdots u_j$ is a j-path in H_i and $u_{j+1},\ldots,u_\ell\notin V(H_i)$;
- (B_k) $u_1u_2 \in E(H_i), u_2u_3 \notin E(H_i), \{u_3, \dots, u_\ell\} \setminus \{u_k\} \subseteq V(H_{i+1}) \setminus V(H_i), and u_k \in V(H_i).$

If (H_1, \ldots, H_t) constructs a C_ℓ -component, then for each $i \in [t-1]$ the new edges in H_{i+1} form a path (by Proposition 5.6). We denote this path by Q_i and write x_i, z_i for its endvertices and y_i for the sole internal vertex of Q_i in H_i if it exists. (Again

by Proposition 5.6, $V(Q_i) \cap V(H_i)$ is either $\{x_i, z_i\}$ or $\{x_i, y_i, z_i\}$.) We write type(i) to denote the operation $((A_j)$ or (B_k) , where $2 \leq j \leq \ell$ and $3 \leq k \leq \ell - 1$) which constructs H_{i+1} from H_i .

PROPOSITION 5.7 (see [2]). Let $\ell \geq 5$. If G is a C_{ℓ} -component (H_1, \ldots, H_t) and $m(G) < m_2(C_{\ell})$, then for all distinct $i, j \in [t-1]$ and each $k \in \{3, \ldots, \ell-1\}$ we have the following.

- If $type(i) = (A_{\ell})$, then every other step is of type (A_2) or (A_3) .
- If type(i) = $(A_{\ell-1})$, then every other step is of type (A_2) , (A_3) , or (A_4) .
- If type(i) = type(j) = $(A_{\ell-1})$, then $\ell = 5$ and every other step is of type (A_2) .
- If $type(i) = (B_k)$, then every other step is of type (A_2) .

5.3.1. Cycles of length 4. We first consider orientations of 4-cycles.

THEOREM 5.8. If G is a graph such that $m(G) < m_2(C_4)$ and \vec{C} is an orientation of C_4 , then $G \not\to \vec{C}$.

To prove Theorem 5.8 we use the following proposition.

PROPOSITION 5.9. Let G be a C_4 -component (H_1, \ldots, H_t) with $m(G) < m_2(C_4)$. If $type(i) = (B_3)$ for some i, then $type(j) = (A_2)$ for each $j \in [t-1] \setminus \{i\}$.

Proof. For each $j \in [t-1]$, let v_j and e_j be, respectively, the number of new vertices and new edges in H_{j+1} . By Proposition 5.6 we have $e_j \geq 3v_j/2$ and $e_j > v_j$ for each $j \in [t-1]$. Suppose type $(i) = (B_3)$, and fix $j \in [t-1] \setminus \{i\}$. We have

$$\frac{3}{2} = m_2(C_4) > m(G) = \frac{4 + \sum_{\alpha \in [t-1]} e_{\alpha}}{4 + \sum_{\alpha \in [t-1]} v_{\alpha}} \ge \frac{4 + 3 + e_j + \sum_{\alpha \in [t-1] \setminus \{i,j\}} 3v_{\alpha}/2}{4 + 1 + v_j + \sum_{\alpha \in [t-1] \setminus \{i,j\}} v_{\alpha}},$$

so
$$v_j > 2(e_j - v_j) - 1$$
. Hence $v_j \ge 2$ (because $v_j < e_j$) and type $(j) = (A_2)$.

Proof of Theorem 5.8. If \vec{C} is anti-directed or contains a long block, then $G \not\to \vec{C}$ by Corollary 5.3 and Lemma 5.4, respectively. We may therefore assume \vec{C} has precisely two blocks of length 2; we may also assume that G is a C_4 -component with construction sequence (H_1, \ldots, H_t) , because distinct C_4 -components can be independently oriented and edges in no C_4 -component can be arbitrarily oriented.

If there is no step of type (B_3) , then G is bipartite. (Indeed, $H_1 \simeq C_4$ and steps of type (A_2) , (A_3) , or (A_4) preserve bipartiteness.) Fix a proper 2-coloring of G and orient every edge toward the same color class. This avoids directed paths with length 2, so $G \not\to \vec{C}$.

On the other hand, if $\operatorname{type}(i) = (B_3)$, then every other step is of $\operatorname{type}(A_2)$ by Proposition 5.9. Let $u_1u_2u_3u_4u_1$ be the new cycle in H_{i+1} , where $u_1u_2 \in H_i$ (and $u_2u_3, u_3u_4, u_4u_1 \notin E(H_i), u_1, u_2, u_3 \in V(H_i), u_4 \notin V(H_i)$). We may assume that H_1 is a 4-cycle $u_1u_2abu_1$.

If there is a unique new 4-cycle in H_{i+1} , then it suffices to orient H_1 as a directed cycle and the new edges in each step as directed paths. Clearly H_1 has a long block and, for each $\alpha \in [t-1]$, every new 4-cycle in $H_{\alpha+1}$ contains a long block (formed by Q_{α}), so $G \not\to \vec{C}$.

Finally, if a 4-cycle in H_{i+1} contains u_2u_3 but avoids $u_3u_4u_1$, then we may replace the *i*th step (of type (B_3)) by one (A_4) -step (adding u_2u_3) and one (A_3) -step (adding $u_3u_4u_1$). This yields a construction sequence free from (B_3) , which implies (as argued above) that G is bipartite and $G \not\to \vec{C}$. Similarly, if H_{i+1} contains a new 4-cycle which avoids u_2u_3 , then we may replace the *i*th step by one (A_3) -step (adding $u_3u_4u_1$) and one (A_4) -step (adding u_2u_3) and also conclude that $G \not\to \vec{C}$.

5.3.2. Cycles of length at least 5. We now generalize Theorem 5.5 for oriented cycles with at least 5 vertices.

THEOREM 5.10. Let \vec{C} be an orientation of C_{ℓ} , where $\ell \geq 5$. If G is a graph and $m(G) < m_2(C_{\ell})$, then $G \not\to \vec{C}$.

We use the following results.

Remark 5.11. Let G be a C_5 -component. If G can be constructed solely by steps of type (A_2) , then every cycle in G has length congruent to 2 (mod 3).

Proof. The proof is by induction on $i \in [t]$ where (H_1, \ldots, H_t) is the construction sequence of G. The base holds because H_1 is a 5-cycle. Now suppose every cycle in H_i has length congruent to 2 (mod 3), where $i \geq 1$. We form H_{i+1} by a step of type (A_2) , i.e., by adding a 5-path P joining the endvertices of an edge uv of H_i . Any new cycle C is formed by an uv-path P' in H_i , together with P. If P' = uv, then C has length 5, and the claim holds. On the other hand, if $uv \notin E(P')$, then $C = P' \cup P$, but since C' := P' + uv is a cycle in H_i , it follows that $e(C') \equiv 2 \pmod{3}$, so $e(C) = e(P') + e(P) = e(C') - 1 + e(P) \equiv 2 \pmod{3}$.

Remark 5.12. Let G be a C_5 -component. If G is constructed solely by steps of the types (A_2) and (A_3) , then G contains no C_3 and no C_4 .

Proof. Let (H_1, \ldots, H_t) be a construction sequence of G. Note that $C_3 \nsubseteq G$: indeed, $C_3 \nsubseteq H_1$ since H_1 is a C_5 ; moreover, for each $i \in [t-1]$ we have $H_{i+1} = H_i \cup Q_i$, and Q_i is a path of length at least 3 which is internally disjoint from H_i , so $C_3 \nsubseteq H_{i+1}$.

Similarly $C_4 \nsubseteq H_1$, and if $H_i \cup Q_i$ contains a C_4 , then type $(i) = (A_3)$, so x_i and z_i are connected by a path $x_i w z_i$ in H_i (which, together with Q_i , creates a C_5). But then $x_i w z_i x_i$ is a C_3 in G, a contradiction.

We are now in position to prove the main result of this section.

Proof of Theorem 5.10. Let G be a graph with $m(G) < (\ell-1)/(\ell-2)$, where $\ell \geq 5$, and let \vec{C} be an oriented ℓ -cycle. By Lemma 5.4, if \vec{C} contains a long block, then $G \not\to \vec{C}$, so we may assume that every block of \vec{C} has length at most two. We will show that the C_{ℓ} -components of G admit an orientation in which every ℓ -cycle has a long block. It suffices to consider one such component F, as C_{ℓ} -components can be independently oriented (they do not share edges) and remaining edges can be arbitrarily oriented (each ℓ -cycle in G lies in some C_{ℓ} -component).

Let F be a C_{ℓ} -component (H_1, \ldots, H_t) of G. Hence, for all $i \in [t-1]$, each ℓ -cycle $C \subseteq H_{i+1}$ which did not exist in H_i contains either the subpath $x_iQ_iy_i$ or $y_iQ_iz_i$ (if Q_i intersects H_i in three vertices) or the whole new path Q_i . (We write aPb to denote the subpath of P whose endvertices are a and b.)

Case 0. For each $i \in [t-1]$ we have $type(i) \in \{A_j : 2 \le j < \ell - 1\}$.

For each $i \in [t-1]$, every new cycle in H_{i+1} contains Q_i and $e(Q_i) \geq 3$. We construct an orientation of F which avoids \vec{C} as follows. Fix a directed orientation of H_1 , and for each $i \in [t-1]$ fix a directed orientation of Q_i . Clearly H_1 does not contain \vec{C} , and for each $i \in [t-1]$ every new ℓ -cycle in H_{i+1} contains a long block (since Q_i is directed), so $F \not\to \vec{C}$.

Case 1. There is precisely one index $i \in [t-1]$ such that $type(i) = (A_{\ell-1})$.

Let $Q_i = x_i v z_i$, and let C be an ℓ -cycle in H_i containing z_i . We may assume that $H_1 = C$. Note that $e(Q_j) \geq 3$ for each $j \in [t-1] \setminus \{i\}$ since (by Proposition 5.7) type $(j) \in \{(A_2), (A_3), (A_4)\}$ and also $\ell \geq 6$ if type $(j) = (A_4)$ for some j. We orient F as follows.

Firstly, orient H_1 so that z_i is the origin of a long block, and so that z_i has no inneighbors in H_1 . Secondly, for each $j \in [i-1]$, orient Q_j forming a directed path, while ensuring that z_i has no inneighbors in H_{j+1} . (This is possible since, if Q_j contains z_i , then z_i is an endvertex of Q_j .) Orient Q_i as a directed path from x_i to z_i . Finally, for each $j \in [t-1] \setminus [i]$ orient Q_j so as to form a directed path.

Clearly, the orientation of H_1 avoids \vec{C} . Since $e(Q_j) \geq 3$ for each $j \in [t-1] \setminus \{i\}$, each new ℓ -cycle in H_{j+1} has a long block (as it contains Q_j). Finally, every new cycle C in H_{i+1} must contain Q_i as well as some edge $z_i z \in E(H_i)$. As z_i has no inneighbors in H_i , the edge $z_i z$ extends the directed path $x_i \to v \to z_i$, forming a long block in C. This shows that every ℓ -cycle has a long block, so $F \nrightarrow \vec{C}$.

Case 2. There exists $i \in [t-1]$ such that $type(i) = (A_{\ell})$.

Let $\alpha \in [t-1]$. By Proposition 5.7, if $\alpha \neq i$, then $\operatorname{type}(\alpha) \in \{(A_2), (A_3)\}$, so $e(Q_{\alpha}) \geq 3$. We may assume that H_1 is an ℓ -cycle in H_i containing z_i . We orient the edges of F as follows. Let N be the set of neighbors of z_i in H_i .

First orient H_1 with two blocks of length at least 2 and origin z_i (see Figure 1). Next, for each $j \in [i-1]$, we do the following. If no endvertex of Q_j lies in $\{z_i\} \cup N$, fix an arbitrary directed orientation of Q_j . If a single endvertex q of Q_j lies in $\{z_i\} \cup N$, then orient Q_j to form a directed path with origin q. If both endvertices q, r of Q_j lie in $\{z_i\} \cup N$, where we assume $r \neq z_i$, then orient Q_j so that it has precisely two blocks, starting from q and r, and so that the latter has precisely one arc. Finally, orient $x_i \to z_i$, and for each $j \in [t-1] \setminus [i]$ fix a directed orientation of Q_j (see Figure 1).

Let us check that every ℓ -cycle in F has a long block. This is clearly true in H_1 . Now suppose $\alpha \in [t-1] \setminus \{i\}$. Note that each new cycle in $H_{\alpha+1}$ contains Q_{α} and that $e(Q_{\alpha}) \geq 3$ since type $(\alpha) \in \{(A_2), (A_3)\}$. Moreover, Q_{α} has a block of length at least $e(Q_{\alpha}) - 1$ if $\alpha < i$, and a block of length at least $e(Q_{\alpha})$ if $\alpha > i$. Hence, if $e(Q_{\alpha}) \geq 4$ or if $\alpha > i$, then Q_{α} has a long block. So we may suppose that $\ell = 5$, $e(Q_{\alpha}) = 3$, and $\alpha \in [i-1]$. Hence type $(\alpha) = (A_3)$, and there is precisely one new 5-cycle C in $H_{\alpha+1}$ (as otherwise two 3-paths joining x_{α} and z_{α} , would form a 4-cycle in H_{α} , contradicting Remark 5.12). If $|\{x_{\alpha}, z_{\alpha}\} \cap (\{z_i\} \cup N)| \leq 1$, then C has a long block containing Q_{α} . Otherwise, $\{x_{\alpha}, z_{\alpha}\} \subseteq \{z_i\} \cup N$. Note that $x_{\alpha}zz_{\alpha} \subseteq H_{\alpha}$ for some $z \in V(H_{\alpha})$ since $C \subseteq H_{\alpha+1}$; if $z_i \in \{x_{\alpha}, z_{\alpha}\}$, then $x_{\alpha}z_{\alpha} \in E(H_i)$, so $x_{\alpha}z_{\alpha}zx_{\alpha}$ is a triangle in H_i , contradicting Remark 5.12. Therefore $z_i \notin \{x_{\alpha}, z_{\alpha}\}$, so $C = Q_{\alpha} \cup x_{\alpha}z_iz_{\alpha}$ (since $z \neq z_i$ implies $x_{\alpha}zz_{\alpha}z_ix_{\alpha}$ is a 4-cycle in H_i , which contradicts Remark 5.12). Since Q_{α} has a directed 3-path from either x_{α} or z_{α} to a vertex $w \in V(Q_{\alpha}) \setminus V(H_{\alpha})$, and both x_{α} and z_{α} are outneighbors of z_i , it follows that C has a long block.

To conclude Case 2, we consider the new ℓ -cycles in H_{i+1} . Each of these cycles contains the arc $x_i \to z_i$, so it suffices to show that every 3-path $z_i z w$ in H_i (where

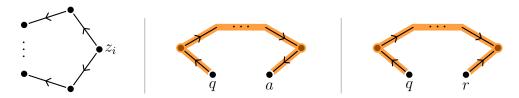


FIG. 1. Orientations in Case 2. Left: orientation of H_1 ; note H_1 has a long block starting from z_i (since $\ell \geq 5$). Center and right: orientations of Q_{α} (where $\alpha \neq i$); in the figure, $a \notin \{z_i\} \cup N$, $r \in N$, and $q \in \{z_i\} \cup N$, where $N := N_{H_i}(z_i)$.

 $x_i \notin \{z, w\}$) is directed from z_i to w. Note that for each $j \in [i-1]$ and each pair of distinct new edges e_1, e_2 in H_{j+1} , there exist distinct new vertices $v_1 \in e_1, v_2 \in e_2$ in H_{j+1} . It follows that either $z_i z w \subseteq H_1$ (if no edge of $z_i z w$ lies in some Q_j with $j \in [i-1]$); or $z_i z \in H_{\alpha}$ and $z w \subseteq Q_{\alpha}$ and z is an endvertex of Q_{α} for some $\alpha \in [i-1]$ (if each Q_j contains at most one edge of $z_i z w$); or $z_i z w \subseteq Q_{\beta}$ and z_i is an endvertex of Q_{β} for some $\beta \in [i-1]$ (if some Q_{β} contains all edges of $z_i z w$). In each of these cases $z_i z w$ has the required orientation.

Hence every ℓ -cycle of F has a long block and $F \not\to \vec{C}$.

Case 3. There exist $i, j \in [t-1]$ such that $type(i) = type(j) = (A_{\ell-1})$.

By Proposition 5.7 we have $\ell = 5$ and $\operatorname{type}(\alpha) = (A_2)$ for each $\alpha \in [t-1] \setminus \{i, j\}$. We may suppose i < j. Let $P = x_i u_2 u_3 z_i \subseteq H_i$ and $Q = x_j v_2 v_3 z_j \subseteq H_j$, and let $Q_i = x_i u_5 z_i$ and $Q_j = x_j v_5 z_j$. By Remark 5.11, every cycle in H_i has length congruent to 2 modulo 3, so H_i contains no C_3 , no C_4 , and no C_6 . In particular, since the union of two distinct 4-paths with common ends contains a cycle with one of these lengths (see Figure 2), we conclude that P is the unique 4-path between x_i and z_i in H_i and hence the unique such path in H_{i+1} . The argument splits into three cases according to how the 5-cycles in H_i intersect P.

Case (a). There exists a 5-cycle C in H_i containing P.

We may assume that $H_1 = C = x_i u_2 u_3 z_i x x_i$ and that $H_2 = H_{i+1} = C \cup x_i u_5 z_i$, so i = 1. We first prove that

(5.1)
$$H_i$$
 contains no C_3 , no C_6 , and precisely one C_4 .

Crucially, note that a step of type (A_2) cannot create a C_3 or a C_4 . Therefore, since $H_1 \simeq C_5$, each C_3 and each C_4 in H_j were created in the ith step resulting in H_{i+1} . Since H_{i+1} is the union of C and $z_iu_5x_i$, we conclude that $C_3 \nsubseteq H_{i+1}$, so $C_3 \nsubseteq H_j$; moreover, the unique $C_4 \subseteq H_j$ is $x_ixz_iu_5x_i$. It remains to show that H_j contains no C_6 . Suppose, looking for a contradiction, that $\alpha \in [j-1]$ is the smallest index such that $H_{\alpha+1}$ has a 6-cycle C'. Note that H_{i+1} contains no C_6 , so $\alpha > i$. Since type(α) = (A_2) , it follows that C' contains a path abcde whose edges are new in $H_{\alpha+1}$, so C' = abcdefa for some $f \in V(H_{\alpha})$. Moreover, abcdea is a (new) 5-cycle in $H_{\alpha+1}$. We conclude that aefa is a 3-cycle in H_{α} , which is a contradiction since $C_3 \nsubseteq H_j$. This proves (5.1).

Claim 5.13. There exists $e \in E(H_j)$ with $e \cap \{x_j, z_j\} \neq \emptyset$ which lies in every 4-path from x_j to z_j in H_j .

Proof. By (5.1), every 4-path between x_j and z_j in H_j other than Q intersects $x_jv_2v_3z_j$ (i.e., Q) in precisely one edge h; moreover, $h \neq v_2v_3$ (as $C_3 \nsubseteq H_j$; see Figure 2). If Claim 5.13 is false, then there are paths $x_jxv_3z_j$ and $x_jv_2yz_j$ in H_j with $x \neq v_2$ and $y \neq v_3$. But this contradicts (5.1), because then either H_j has a 3-cycle $x_jxv_2x_j$ (if x = y) or H_j contains distinct 4-cycles $x_jxv_3v_2x_j$ and $v_2v_3z_jyv_2$ (if $x \neq y$).

Fig. 2. Unions of distinct 4-paths with common endvertices.

We now return to the proof of Case (a), describing the orientation of F. Let e be the edge common to all 4-paths between x_j and z_j in H_j (as per Claim 5.13). Orient H_1 so that it is a directed cycle. For every $\alpha \in [t-1] \setminus \{j\}$, orient the new edges to form a directed path. Finally, orient $x_j v_5 z_j$ so that the path it forms with e is directed.

Let us check that every 5-cycle in F has a long block. Clearly, the two 5-cycles in H_2 have each a long block. For each $\alpha \in [t-1] \setminus \{i,j\}$, each new 5-cycle in $H_{\alpha+1}$ contains Q_{α} and hence has a long block $(e(Q_{\alpha}) \geq 3 \text{ since type}(\alpha) = (A_2))$. Finally, every new 5-cycle in H_{j+1} contains the directed path formed by e and $x_jv_5z_j$. We conclude that $F \nleftrightarrow \vec{C}$.

Case (b). There exists a 5-cycle C in H_i containing precisely two edges of P.

We may assume that no 5-cycle in H_i contains all edges of P; otherwise we would be done by Case (a). Note that C cannot avoid u_2u_3 , since $C_3 \nsubseteq H_i$. We may therefore assume that C is a 5-cycle in H_i with $z_iu_3u_2 \subseteq C$ and that $H_1 = C$.

Let $\alpha \in [t-1]$ be such that u_2x_i is new in $H_{\alpha+1}$, and let C_{α} be a new 5-cycle in $H_{\alpha+1}$ containing u_2x_i . Note that $\operatorname{type}(\alpha) = (A_2)$, so $Q_{\alpha} = u_2x_ixyv$, where $u_2, v \in V(H_{\alpha})$ and $x_i, x, y \notin V(H_{\alpha})$. We modify the construction sequence of F to a construction sequence of F where the ith step is omitted and the α th step is replaced by consecutive steps adding, in this order, $u_2x_iu_5z_i$ and x_ixyv . In the new sequence, $\operatorname{type}(\alpha) = \operatorname{type}(\alpha+1) = (A_3)$, $\operatorname{type}(j) = (A_4) = (A_{\ell-1})$, and each other step remains of $\operatorname{type}(A_2)$. By the argument in Case 2, $F \nrightarrow \vec{C}$.

Case (c). Every 5-cycle in H_i contains at most one edge of P.

This is similar to the preceding case. Let $C=H_1$ be a 5-cycle containing z_iu_3 . We first show that if u_2u_3 is new in $H_{\alpha+1}$ and u_2x_i is new in $H_{\beta+1}$, then $\alpha<\beta< i$. (Note that for all $j\in [i-1]$ every edge in H_j lies in a 5-cycle.) Indeed, $\alpha,\beta< i$ by definition, and $\alpha\neq\beta$ as otherwise a cycle in $H_{\alpha+1}$ would contain two edges of P. Moreover, $\operatorname{type}(\alpha)=\operatorname{type}(\beta)=(A_2)$ by Proposition 5.7, so each new edge in $H_{\alpha+1}$ and $H_{\beta+1}$ contains at least one new endvertex. Hence $\alpha<\beta$.

Let $Q_{\beta} = u_2 x_i x y v$, where $u_2, v \in V(H_{\beta})$ and $x_i, x, y \notin V(H_{\beta})$. As in Case (b), we define an alternative construction sequence of F, where the *i*th step is omitted and the β th step is replaced by consecutive steps adding $u_2 x_i u_5 z_i$ and $x_i x y v$ (in this order). By Case 2, $F \nrightarrow \vec{C}$.

Case 4. There exists $i \in [t-1]$ such that $\operatorname{type}(i) = (B_j)$, where $3 \leq j \leq \ell - 1$. By Proposition 5.7, for each $\alpha \in [t-1] \setminus \{i\}$ we have $\operatorname{type}(\alpha) = (A_2)$, and thus $e(Q_{\alpha}) \geq 3$. Recall that $y_i \in V(Q_i) \cap H_i$. Note that no new cycle in H_{i+1} avoids both $x_i Q_i y_i$ and $y_i Q_i z_i$.

If a new ℓ -cycle in H_{i+1} contains $x_iQ_iy_i$ but not $y_iQ_iz_i$, then there exists an alternative construction sequence of F which satisfies the hypothesis of one of the previous cases, and hence and $F \not\to \vec{C}$: indeed, we may replace the ith step in (H_1, \ldots, H_t) by consecutive steps adding $x_iQ_iy_i$ and $y_iQ_iz_i$ (a similar exchange appears at the end of the proof of Theorem 5.8). We argue similarly if a new ℓ -cycle in H_{i+1} avoids $x_iQ_iy_i$.

If every new ℓ -cycle in H_{i+1} contains all of Q_i , then for each $\alpha \in [t-1]$ every new cycle in $H_{\alpha+1}$ contains Q_{α} . We fix a directed orientation of H_1 and orient Q_{α} as a directed path for each $\alpha \in [t-1]$. Then H_1 has a long block, and for all $\alpha \in [t-1]$ the new ℓ -cycles in $H_{\alpha+1}$ have a long block as well (since $e(Q_{\alpha}) \geq 3$). Hence, $F \not\to \vec{C}$. \square

6. Proof of the main theorem (Theorem 2.1). Theorem 4.1 establishes the case t=3 of Theorem 2.1. We may therefore suppose \vec{H} is either an acyclic orientation of $H \in \{K_t, C_t\}$, with $t \geq 4$, or that \vec{H} is an anti-directed orientation of a

strictly 2-balanced graph H with $\delta(H) \geq 2$. In each one of these cases \vec{H} is 2-Ramsey-avoidable (by Remark 3.3), so (by Theorems 1.1 and 2.2 together with Lemmas 3.2 and 3.4) it suffices to show that $G \not\to \vec{H}$ whenever $m(G) < m_2(H)$. Indeed, this follows by Theorem 5.1 (when H is complete), by Theorems 5.8 and 5.10 (when H is a cycle), and by Corollary 5.3 otherwise.

7. Concluding remarks. We have shown that if \vec{H} is an oriented clique or cycle, then the threshold for $G(n,p) \to \vec{H}$ is $n^{-1/m_2(\vec{H})}$ except if $\vec{H} \simeq \mathrm{TT}_3$. Interestingly, TT_3 is not the only oriented graph whose threshold is not of the form $n^{-1/m_2(\vec{H})}$. For instance, fix $\varepsilon > 0$, and construct \vec{G} from an oriented tree \vec{T} of order $n^{1/2-\varepsilon}$ by identifying with each $v \in V(\vec{T})$ the source of a distinct copy \vec{H}_v of TT_3 . It can be shown that $p_{\vec{G}} \ll n^{-1/m_2(\vec{G})} = n^{-1/m_2(\mathrm{TT}_3)}$. In a forthcoming paper, the authors describe a richer class of oriented graphs \vec{G} for which $p_{\vec{G}} \ll n^{-1/m_2(\vec{G})}$.

REFERENCES

- J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications, Springer-Verlag, London, 2009, https://doi.org/10.1007/978-1-84800-998-1.
- G. BARROS, B. CAVALAR, G. MOTA, AND O. PARCZYK, Anti-Ramsey threshold of cycles, Discrete Appl. Math., to appear.
- [3] B. Bollobás and A. Thomason, Threshold functions, Combinatorica, 7 (1987), pp. 35–38, https://doi.org/10.1007/BF02579198.
- [4] G. Brightwell and Y. Kohayakawa, Ramsey properties of orientations of graphs, Random Structures Algorithms, 4 (1993), pp. 413–428, https://doi.org/10.1002/rsa.3240040403.
- [5] M. Bucić, S. Heberle, S. Letzter, and B. Sudakov, Monochromatic trees in random tournaments, Combin. Prob. Comput., 29 (2020), pp. 318–345, https://doi.org/10.1017/ S0963548319000373.
- [6] M. BUCIĆ, S. LETZTER, AND B. SUDAKOV, Directed Ramsey number for trees, J. Combin. Theory Ser. B, 137 (2019), pp. 145–177, https://doi.org/10.1016/j.jctb.2018.12.006.
- [7] B. CAVALAR, Ramsey-Type Problems in Orientations of Graphs, preprint, arXiv:1903.02099, 2019, http://arxiv.org/abs/1903.02099.
- [8] F. R. K. CHUNG, A note on subtrees in tournaments, internal memorandum, Bell Laboratories, Murray Hill, NJ, 1982.
- [9] M. COCHAND AND P. DUCHET, A few remarks on orientation of graphs and Ramsey theory, in Irregularities of Partitions, Algorithms Combin. 8, Springer-Verlag, Berlin, 1989, pp. 39–46, https://doi.org/10.1007/978-3-642-61324-1.3.
- [10] D. CONLON, W. GOWERS, W. SAMOTIJ, AND M. SCHACHT, On the KLR conjecture in random graphs, Israel J. Math., 203 (2014), pp. 535-580, https://doi.org/10.1007/ s11856-014-1120-1.
- [11] R. DIESTEL, Graph Theory, 5th ed., Grad. Texts in Math., Springer, New York, 2017, https://doi.org/10.1007/978-3-662-53622-3.
- [12] F. DROSS AND F. HAVET, On the unavoidability of oriented trees, J. Combin. Theory Ser. B, 151 (2021), pp. 83–110, https://doi.org/10.1016/j.jctb.2021.06.003.
- [13] A. EL SAHILI, Trees in tournaments, J. Combin. Theory Ser. B, 92 (2004), pp. 183–187, https://doi.org/10.1016/j.jctb.2004.04.002.
- [14] P. Erdős and L. Moser, On the representation of directed graphs as unions of orderings, Publ. Math. Inst. Hung. Acad. Sci., 9 (1964), pp. 125–132.
- [15] R. HÄGGKVIST AND A. THOMASON, Trees in tournaments, Combinatorica, 11 (1991), pp. 123–130, https://doi.org/10.1007/BF01206356.
- [16] F. HAVET, Trees in tournaments, Discrete Math., 243 (2002), pp. 121–134, https://doi.org/10.1016/S0012-365X(00)00463-5.
- [17] S. Janson, T. Luczak, and A. Ruciński, Random Graphs, Wiley-Interscience, New York, 2000, 10.1002/9781118032718.
- [18] Y. KOHAYAKAWA, P. B. KONSTADINIDIS, AND G. O. MOTA, On an anti-Ramsey threshold for sparse graphs with one triangle, J. Graph Theory, 87 (2018), pp. 176–187, https://doi.org/ 10.1002/jgt.22150.
- [19] Y. KOHAYAKAWA, T. ŁUCZAK, AND V. RÖDL, Ramsey-type results for oriented trees, J. Graph Theory, 22 (1996), pp. 1–8, https://doi.org/10.1002/(SICI)1097-0118(199605)22: 1(1::AID-JGT1)3.0.CO;2-S.

- [20] Y. Kohayakawa, G. Mota, O. Parczyk, and J. Schnitzer, The Anti-Ramsey Threshold of Complete Graphs, preprint, arXiv:1902.00306, 2019, https://arxiv.org/abs/1902.00306.
- [21] D. KÜHN, R. MYCROFT, AND D. OSTHUS, A proof of Sumner's universal tournament conjecture for large tournaments, Proc. Lond. Math. Soc., 102 (2010), pp. 731–766, https://doi.org/ 10.1112/plms/pdq035.
- [22] D. KÜHN, R. MYCROFT, AND D. OSTHUS, An approximate version of Sumner's universal tournament conjecture., J. Combin. Theory Ser. B, 101 (2011), pp. 415–447, https://doi.org/10.1016/j.jctb.2010.12.006.
- [23] N. LINIAL, M. SAKS, AND V. Sós, Largest digraphs contained in all n-tournaments, Combinatorica, 3 (1983), pp. 101–104, https://doi.org/10.1007/BF02579345.
- [24] X. Lu, On claws belonging to every tournament, Combinatorica, 11 (1991), pp. 173–179, https://doi.org/10.1007/BF01206360.
- [25] X. Lu, Claws contained in all n-tournaments, Discrete Math., 119 (1993), pp. 107–111, https://doi.org/10.1016/0012-365X(93)90120-I.
- [26] X. Lu, D.-W. WANG, AND C.-K. WONG, On avoidable and unavoidable claws, Discrete Math., 184 (1998), pp. 259–265, https://doi.org/10.1016/S0012-365X(97)00207-0.
- [27] R. MYCROFT AND T. NAIA, Unavoidable trees in tournaments, Random Structures Algorithms, 53 (2018), pp. 352–385, https://doi.org/10.1002/rsa.20765.
- [28] T. NAIA, Large Structures in Dense Directed Graphs, PhD thesis, University of Birmingham, 2018.
- [29] R. Nenadov, Y. Person, N. Škorić, and A. Steger, An algorithmic framework for obtaining lower bounds for random Ramsey problems, J. Combin. Theory Ser. B, 124 (2017), pp. 1–38, https://doi.org/10.1016/j.jctb.2016.12.007.
- [30] R. Nenadov and A. Steger, A short proof of the random Ramsey theorem, Combin. Prob. Comput., 25 (2016), pp. 130–144, https://doi.org/10.1017/S0963548314000832.
- [31] L. RÉDEI, Ein kombinatorischer Satz, Acta Litteraria Szeged, 7 (1934), pp. 39-43.
- [32] R. STEARNS, The voting problem, Amer. Math. Monthly, 66 (1959), pp. 761–763, https://doi. org/10.2307/2310461.
- [33] A. THOMASON, Paths and cycles in tournaments, Trans. Amer. Math. Soc., 296 (1986), pp. 167–180, https://doi.org/10.2307/2000567.
- [34] N. WORMALD, Subtrees of large tournaments, in Combinatorial Mathematics X, Lecture Notes in Math. 1036, L. Casse, ed., Springer, Berlin, 1983, pp. 417–419, https://doi.org/10.1007/ BFb0071535.