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Abstract. If G is a graph and ﬁ_‘is an oriented graph, we write G — H to say that every
orientation of the edges of G contains H as a subdigraph. We consider the case in which G is the
binomial random graph G(n, p), establishing the threshold p; = pz(n) for the property G(n,p) — H

for the cases in which H is an acyclic orientation of a complete graph or of a cycle.
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1. A Ramsey-type property. For each (undirected) graph G and oriented
graph H , we write G — H to mean that every orientation of G' contains a copy of H ;
the orientation Ramsey number R (H) is inf{n : K,, — H }. Note that every graph G
admits an acyclic orientation, and hence G /4 H if H contains a directed cycle; more-
over, since large tournaments contain large transitive subtournaments, R (f[ ) < oo if
H contains no directed cycles. The orientation Ramsey number has been investigated
in a number of articles [31, 32, 14, 8, 34, 23, 33, 15, 24, 25, 26, 16, 13, 21, 22, 27, 12]
among others, most of which concern a conjecture of Sumner [34]. Sumner’s universal
tournament conjecture states that R (T') < 2¢(T)) for every oriented tree T'; this has
been confirmed for all sufficiently large trees by Kiihn, Mycroft, and Osthus [22, 21];
see also [1, 28].

Thresholds. Thresholds for Ramsey-type properties are widely studied as well
(see, e.g., [17, 29] and the many references therein). We call pj; = pz(n) a threshold

for G(n,p) — H if

. 0 if ;
lim P[G(n7p)—>H]: ?p<<pH,
n— oo 1 lfp>>pg,

where a < b (or, equivalently, b > a) means lim,, o a,/b, = 0. As is customary,
we speak of “the threshold p;,” since pj; is unique within constant factors. If H is

acyclic, then the property G(n,p) — H is nontrivial and monotone, and hence [3] it
has a threshold p; = p;(n). An upper bound for p; = p;(n) involving the so-called
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maximum 2-density of H is proved in [7], following methods in [30]. For any graph or
oriented graph G, the mazimum density and (when v(G) > 3) the mazimum 2-density
of G are, respectively,

— e(J) o e(J)—1
m(G) = max o) and ma(G) := max W) =2
v(J)>1 v(J)>3

THEOREM 1.1 (see [7]). Let H be an acyclically oriented graph. There exists
a constant C = C’(ﬁ) such that if p > Cn~Y/™2H) then P[G(n,p) — I;T] — 1 as
n — oo.

We remark in passing that the regularity method can be used to give an alternative
proof for Theorem 1.1 (such a proof would combine ideas from [17, section 8.5] and,
say, [10]).

2. Contribution. We establish the orientation Ramsey threshold for all acyclic
orientations of the complete graph K; and cycle Cy, for each t > 3, as well as for certain
oriented bipartite graphs. We call a digraph H anti-directed if each vertex in H has
either no inneighbours or no outneighbors (so G is bipartite and all arcs point to the
same part). We call a graph H strictly 2-balanced if v(H) > 3 and the only subgraph
of H attaining its maximum 2-density is H itself (i.e., (e(J) —1)/(v(J) —2) < ma(H)
for each proper subgraph J C H with v(J) > 3).

THEOREM 2.1. Ifﬁ is an acyclic orientation of Ky or Cy, then

= [P =3,
pg\n)= n—l/mg(H) ift >4

is the threshold for G(n,p) — H. Moreover, zfﬁ is an anti-directed orientation of a
strictly 2-balanced graph H such that §(H) > 2 and mo(H) — |mo(H)| < 1/2, then

pg(n) = n~1/m=0D)

is the threshold for G(n,p) — H.

The fact that the case t = 3 is “different” from the ¢ > 4 cases suggests that the
problem of determining pz = pz(n) for general H may be hard. Indeed, the t = 3
case can be used to produce other H for which g < n~/m2(H). see section 7 for
further comments in this direction. A similar phenomenon has been observed in the
context of a different Ramsey type property [18, 20].

In view of Theorem 1.1, to prove Theorem 2.1 (except for the case in which His an
orientation of K3), it suffices to prove the so called O-statement, that is, it is enough to
show that if p < n=1/™2() then G(n,p) — H holds with vanishing probability. Our
proof of this 0-statement uses recent advances in the study of Ramsey-type thresholds:
a framework developed by Nenadov et al. [29] (outlined below) and structural results
of Barros et al. [2].

We need only a simplified version of the results in [29] (see Definitions 10 and 11
in [29]). Let G and H be graphs, where 6(H) > 1. An edge e € E(G) is H-closed
if e belongs to at least two copies of H in G. A copy of H in G is H-closed if at
least three of its edges are H-closed, and G is H-closed if all vertices and edges of G
lie in H-closed copies of H. Finally, G is an H-block if G is H-closed and for each
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proper nonempty subset £/ C E(G) there exists a copy H' of H in G such that
EHYNE #0and E(H')\ E' # 0.

THEOREM 2.2 (see [29, Corollary 13]). Let H be a strictly 2-balanced graph with
at least 3 edges such that H is not a matching. If p < n=Y™2H) then with high
probability every H-block F of G(n,p) satisfies m(F) < mqo(H).

Since complete graphs and cycles are strictly 2-balanced, Theorem 2.2 reduces
the proof of the O-statement in Theorem 2.1, except in the case t = 3, to showing
that G 4 H for every graph G whose H-blocks have maximum density strictly be-
low ma(H). This is achieved for cycles using results from [2], whereas for tournaments
and anti-directed graphs, as well as for the case t = 3 of Theorem 2.1 we use ad hoc
methods (see Theorems 4.1, 5.1, and 5.2). Theorem 2.1 is proved in section 6.

Remark. Other Ramsey-type properties for directed graphs include requiring
copies to be induced [9, 19, 4] and allowing colorings plus orientations [5, 6].

3. Auxiliary definitions and results. We use standard notation (see, e.g., [17,
11]). A k-path is a path with k vertices; k-cycles are defined similarly. A directed
k-path is an oriented path v; — --- — vg. A directed k-cycle is oriented as vy —
.-+ = v, — v1. Let G be an oriented graph. A maximal directed path in G is called
a block. A path or block is long if it has at least 3 edges. A graph G is k-degenerate
if for all J C G the minimum degree §(.J) is at most k. We use the following simple
fact.

LEMMA 3.1. Every graph G with at least one vertex is 2m(G)-degenerate.

Let G and H be graphs, and let H be an orientation of H. We denote by Cx (G) the
edge intersection graph of H in G, whose vertices correspond to copies of H in G and
whose edges join distinct copies which share a common edge in G. An H-component is
a subgraph of G formed by the union of all copies of H in some connected component
of Cy(G). Note that G /4 H if and only if each H-component of G admits an H-free
orientation. Let G and H be graphs, and let C' be an H-component of G. If H; is
an arbitrary copy of H in C, then there exists a sequence H; C H, C --- C H; =C
with the following property. For each ¢ € [t — 1], there exists a copy H' of H such
that H' ¢ H;, E(H')N E(H;) # 0 and H;1y = H; U H'. We say that (Hy,..., Hy)
constructs C, and call (Hy, ..., Hy) a construction sequence of C. For each i € [t —1],
we say that a vertex or edge of H;y1 is new in H; 4 if it is not contained in H; and
say that F' C H,;14 is new (in H;41) if F contains a new edge in H;,1. Moreover, if
H{ is a copy of H in H;, then there exists a construction sequence (Hi,..., H;}) of H;
starting with H{ and hence a construction sequence (Hy, ..., H}, Hit1,..., H) of C.

Let G be a graph, and suppose E C E(G). We write G[E] for the subgraph of G
consisting of the edges in E and the vertices in G which are incident with those edges.

LEMMA 3.2 (see [29, Lemma 14]). Let G and H be graphs. If G is H-closed,
then E(G) admits a partition {E1,..., Ex} such that G[E1),...,G[Eg] are H-blocks
and each copy of H in G lies entirely in one of these H-blocks.

Let H be an orientation of a graph H. We say H is 2-Ramsey-avoidable if for all
e, f € E(H), every orientation of e, f can be extended to an H-free orientation of H.

Remark 3.3. Let k > 4. If H is either an orientation of C, an acyclic tournament
of order k, or an anti-directed orientation of a graph H with 6(H) > 1, then H is
2-Ramsey-avoidable.
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Proof. Let H be the underlying graph of H. In each of the following cases, let
e,f € E(H) be chosen and oriented arbitrarily; it suffices to complete an H-free
orientation of H.

Suppose H is an orientation of Cj. Note that we can complete the orientation
of e, f to orientations C_"l, 62 of C}, such that C_"l has a block of length at least k—1 > 3
and C» has no long block. If H has a block of length at least & — 1, then we pick C’};
else we pick C.

If H is an acyclic orientation of K, we complete the orientation so that it contains
a directed triangle (some triangle in H has at most one edge already oriented).

In the remaining case (anti-directed graph), we complete the orientation of H
forming a directed 3-path (since k& > 4, some v € V(H) is incident with precisely
one of e, f, while §(H) > 1 implies some other edge incident with v has not been
oriented). d

Remark 3.3 will be used with the next lemma and Theorem 2.2 to establish our
main results.

LEMMA 3.4. Let G be a graph, and let H be 2-Ramsey-avoidable. If B /4 H for
each H-block B of G, then G 4~ H.

Proof. Let H be the underlying graph of H. To show that G admits an H-free
orientation, we may assume each edge of G lies in a copy of H (the orientation of
other edges is irrelevant).

Let Gy = G and, for each i = 1,2,... proceed as follows. If G;_; is H-closed,
then stop, set m :=i—1 and F := G,,,. Otherwise, some copy F; of H in G;_; has at
most two H-closed edges in G;_;. Form G; by deleting from G;_; each non-H-closed
edge of F; and then each isolated vertex. Note that G;,_1 = G; U F; and that each
e € E(G;) lies in some copy of H.

Note that F'is H-closed. By Lemma 3.2, F' can be partitioned into a collection B
of edge-disjoint H-blocks such that each copy of H in F lies entirely in some B € B.
By assumption, B 4 H for each B € B, so F admits an H-free orientation F (the
disjoint union of H-free orientations of each B € B).

Finally, we extend G := F to an H-free orientation éo of G. For each ¢, from m
to 1, let G;_; extend G; by orienting the edges E(F;)\ E(G;) so that F; is H-free (this
is possible because H is 2-Ramsey-avoidable). Clearly, no copy of H in G induces H
in G, so G s H. |

4. Transitive triangles. Let TT3 be the transitive triangle. In this section we
show that the upper bound for prr,(n) given in Theorem 1.1 is not tight.

THEOREM 4.1. The threshold for G(n,p) — TTjy is prr,(n) = n= /MK,

Let W5 be the wheel graph obtained from C4 by adding a new vertex joined to
all others. We prove the 0-statement of Theorem 4.1 using a structural property of
K3-components.

PROPOSITION 4.2. If G is a K3-component with uw,vw € E(GQ) and uv ¢ E(G),
then there exists J C G such that either v(J) = 6 and e(J) =9 or J+uv is isomorphic
to Ky or Wis.

We write F' ~ G to mean that the graphs F' and G are isomorphic.

Proof. Let Fy---Fs be a shortest path in Cg,(G) such that uw € E(F;) and
vw € E(F). It suffices to show the following.
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e If s =2, then J := F; U F; satisfies J + uv >~ Kjy.
o If s =3, then J := F; U Fy U Fj satisfies J + uv ~ W;.
o If s >4, then J:= Fy U Fy, U F5 U F} satisfies v(J) = 6 and e(J) = 9.
It is simple to check that the following hold by the choice of F; - - - F.
(i) |E(F;)NE(F;11)|=1foralli € [s —1];
(i) [E(Fit1) NUjep E(Fy)| =1 for each i € [s — 1]; and
(iii) each e € E(G) belongs to at most two triangles in Fy U -- U F.
The statement for s = 2 follows by item (i) since Fy ~ K3. If s = 3, then v(J) =5
(by items (i) and (ii)), so J + uv ~ W5. Again by item (i), for each i € [s — 1] we
have [V (Fit1) \ Ujey V(F))| < 1, s0o v(FyU--- U Fy) < s+ 2. Moreover, item (ii)
implies e(Fy U--- U F;) = 2i + 1 for each ¢ € [s]. If s > 4, then e(J) = 9. Clearly
5 < wu(J) < 6; note that v(J) # 5 as otherwise there exists e € E(J) which belongs to
three distinct triangles in J, contradicting item (iii). |

Let (Hy,...,H;) be a Ks-component. For each i € [t — 1], either (A) there
are two new edges in H;11 and one new vertex in H;11; (B) there are two new
edges in H;yq and V(H;41) = V(H;); or (C) there is exactly one new edge in H;
and V(H;41) = V(H;). A graph H is AB-constructible if no construction sequence
of a K3-component of H contains a step of type (C).

PROPOSITION 4.3. If a graph H is AB-constructible, then H 4 TTj3.

Proof. We may assume that H is itself a single Ks-component (Hy, ..., H;), as
edges which do not belong to a copy of K3 in H can be arbitrarily oriented and distinct
Ks-components may be independently oriented. First note that, at each step, exactly
one new copy of K3 is added. This is clearly true for steps of type (A). Moreover, it
is easy to see that if H,11 is created by a step of type (B) and the new edges create
two distinct copies of K3 in H,11, then H admits a construction sequence with a step
of type (C), a contradiction. We orient H; forming a directed triangle and, for each
a € [t — 1], orient the two new edges in H,41 so as to form a new directed triangle.
The resulting orientation is TTs-free. |

Our final ingredient is the following classical result (see, e.g., [17]).
THEOREM 4.4 (see [17]). Let H be a fized graph. Then

{1 if p>> n~t/mH),

n— oo

Proof of Theorem 4.1. If p > n=2/3, then K; C G(n,p) with high probability
by Theorem 4.4; hence G(n,p) — TTs with high probability (as K4 — TT3). Now
suppose that p < n~2/3, and let £ be the event “G(n,p) is not AB-constructible.”
By Proposition 4.3, it suffices to show that P[€] = o(1). Let J be set of all non-
isomorphic graphs of order 6 and size 9. By Proposition 4.2, every Kj3-component
of G(n,p) which is not AB-constructible contains either K4, W5, or some J € J.
Using Markov’s inequality, we have

P[] < P[K4 C G(n.p)] +P[Ws C G(n,p)] + Y P[] C G(n,p)]
JeJg

< Z E[\{J’QG(n,p):J':J}\] < nip® 4+ nSpd + | T nSp°.
Je{K4,W5}UT

Since p < n~2/3 and |J| = ©(1), we have P[] = o(1). d
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5. Graphs with low maximum 2-density. The following sections show that
G 4 H for some classes of oriented graphs when H has at least four vertices and
m(G) < mo(H).

5.1. Transitive tournaments. We denote a tournament on k vertices by T%,
writing TT}y, if it is transitive.

THEOREM 5.1. If k > 4 and G is a graph with m(G) < ma(K}y), then G 4 TTy.

Proof. The proof is by induction on n := v(G). The case n < 4 is trivial.
Assume n > 4 and that G’ /4 TTy whenever m(G’) < mq(Kj) and v(G') < n
By Lemma 3.1, deg(u) < k for some u € V(G). Let G' = G —u, so m(G') < ma(Ky,)
and G’ admits a TTj-free orientation G. We shall extend G to an orientation of G
such that each T} containing u has a directed cycle.

We may assume that u lies in some copy of Ky, say K; so deg(u) > k—1. f K
is the only copy of K} containing u, then choose two vertices v,w € V(K — u) and
orient the edges uv and uw so that {u,v,w} induces a directed triangle. Otherwise
let K’ be some K}, containing u other than K. Hence we must have deg(u) = k. Let v
be the unique vertex in V(K)\ V(K’), and w be the unique vertex in V(K”) \ V(X).
Since k — 2 > 2, there are at least two vertices x and y in V(K N K’) \ {u}. Orient
the edges uv, ux, uw, and uy so that each of {u, v, z} and {u, w,y} induces a directed
triangle. Since every K} containing u has at least three vertices in {v,w,x,y}, the
partial orientation of each Kj contains a directed cycle. Any remaining unoriented
edge may be arbitrarily oriented. ]

5.2. Anti-directed digraphs. We next consider anti-directed orientations of
bipartite graphs such as K;; and Cy;.

THEOREM 5.2. Let G and H be graphs, where 6(H) > 2. If H is an anti-directed
orientation of H and m(G) < §(H) —1/2, then G 4 H.

Proof. We proceed by induction on v(G). If v(G) < 2, then G 4 H. Let
0 := §(H). By Lemma 3.1, there exists v € V(G) with deg(v) = 6(G) < 2§ — 2.
By induction, G—v 4 H. Fix an H-free orientation of G—v, and orient |§(G)/2] edges
incident with v toward v and the remaining [§(G)/2] edges away from v. Note that
any copy of H in G containing v necessarily has two edges incident with v oriented
in opposite directions, since 6(H) > 2 and [6(G)/2] <6(H) — 1. O

COROLLARY 5.3. Let H be an anti-directed orientation of a graph H, where H
is strictly 2-balanced, 6(H) > 2 and mo(H) — |mo(H)| < 1/2. For every graph G,
if m(G) < mq(H), then G /4 H.

Proof. We have (e(H — u) — 1)/(u(H — u) — 2) < (e(H) — 1)/(o(H) — 2) for
all u € V(H), since H is strictly 2-balanced. It is easy to check that mqo(H) < §(H),
so [ma2(H)| +1<46(H). Since m(G) < ma(H) < |mo(H)| +1/2 < 6(H) —1/2, we

can apply Theorem 5.2. 0

5.3. Cycles. We now consider orientations of ¢-cycles, where ¢ > 4. The main
results are Theorems 5.8 and 5.10, which deal with the cases ¢ = 4 and ¢ > 5,
respectively. (We also include a simple proof for the case £ > 7; see Theorem 5.5.)
Recall that a block is long if it has at least 3 edges.

LEMMA 5.4. Let C be an oriented cycle with a long block. If G is a graph and
m(G) < mo(C), then G 4 C.
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Proof. Note that v(C) > 4, so ma(C) < ma(Cy) = 3/2. By Lemma 3.1, G is
2-degenerate; hence x(G) < 3. Fix a proper coloring ¢: V(G) — {1,2,3}, and orient
each edge towards its endvertex with the largest color. This orientation contains no
long block, so G 4 C. 0

While the next result is superseded by Theorem 5.10, its proof is much simpler.

THEOREM 5.5. Let C be an_orientation of Cy, where £ > 7. If G is a graph
and m(G) < ma(C), then G 4 C.

Proof. Let £ = e(é). If C contains a long block, then by Lemma 5.4 the theorem
holds; hence, for the remainder of the proof, we may assume that the longest block
of C has length at most 2.

Suppose, looking for a contradiction, that the statement is false. Without loss of
generality, let G be a minimal counterexample (with respect to the subgraph relation).
That is, m(G) < mg(C_”), and G — C, and G + C for each proper subgraph G’ C G.
Let W be the set of vertices in G with degree 2.

If there exists an edge uv joining vertices u,v € W, then (since G is minimal)
uv lies in an f-cycle. Moreover, G \ {u,v} 4 C; so there exists an orientation G
of G\ {u, v} which avoids C. Note that each -cycle in G is either completely oriented
in G (while avoiding C) or contains the three (not yet oriented) edges incident with
either u or v. We extend G by orienting these edges so that they form a directed path
or cycle. Since, by assumption, the length of any block of C is at most two, it follows
that G is an orientation of G avoiding C, a contradiction.

Hence no edge of G lies in W. By the minimality of G, every vertex v € V(G)
lies an f-cycle, so 6(G) > 2. Let n := v(G). Since each vertex of W has degree 2,

(-1
2AW|[+3(n— W) < Y dv) =2¢(G) < 2m(G)n < 25—y
veV(G)

It follows that [W| > n(1—2/(¢ —2)) and

2<1£_22>n<2|W|§e(G)gm(G) <1+512> n,

which is a contradiction for £ > 7. O

The proofs for smaller cycles use a detailed characterization of the construction
sequences of Cp-components, which was obtained recently by Barros et al. [2]. We
state the first of these results in a slightly modified form (the original has “¢ > 5” in
place of “¢ > 4,” but the same proof holds).

PROPOSITION 5.6 (see [2, Proposition 7]). Let £ > 4 be an integer, G be a graph
with m(G) < ma(Cy), and (Hy, ..., Ht) be a Cy-component of G. The following holds
for every 1 < i < t—1. If C is an L-cycle added to H; to form H;i1, then there
exists a labeling C' = ujus - - - uguy such that exactly one of the following occurs, where
2<j<fland3<k<{-—1.

(Aj) wug---u; is a j-path in H; and wjiq,...,ue ¢ V(H;);
(Bk) U1U2 € E(HJ, U2 U3 ¢ E(Hi), {U3,.. ’u,g} \ {uk} - V z+1) \ V( ‘), and
U € V(HZ)

If (Hy,..., H;) constructs a Cy-component, then for each ¢ € [t — 1] the new edges
in H;;q form a path (by Proposition 5.6). We denote this path by @Q; and write z;, 2;
for its endvertices and y; for the sole internal vertex of @; in H; if it exists. (Again
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by Proposition 5.6, V(Q;) N V(H;) is either {x;, z;} or {z;,yi, z:}.) We write type(i)
to denote the operation ((A;) or (By), where 2 < j < £ and 3 < k < ¢ — 1) which
constructs H;;q from H;.

PROPOSITION 5.7 (see [2]). Let £ >5. If G is a Co-component (Hy, ..., H;) and
m(G) < ma(Cy), then for all distinct i, j € [t —1] and each k € {3,...,¢— 1} we have
the following.

o Iftype(i) = (Ap), then every other step is of type (Az) or (As).

o Iftype(i) = (Ay—1), then every other step is of type (As), (As), or (Ayg).

o Iftype(i) = type(j) = (A¢—1), then £ =5 and every other step is of type (Asz).
o Iftype(i) = (Byg), then every other step is of type (As).

5.3.1. Cycles of length 4. We first consider orientations of 4-cycles.

THEOREM 5.8. If G is a graph such that m(G) < my(Cy) and C' is an orientation
of Cy, then G 4 C.

To prove Theorem 5.8 we use the following proposition.

PROPOSITION 5.9. Let G be a Cy-component (Hy, ..., Hy) with m(G) < ma(Cy).
If type(i) = (B3) for some i, then type(j) = (Az2) for each j € [t — 1]\ {i}.

Proof. For each j € [t — 1], let v; and e; be, respectively, the number of new
vertices and new edges in H;;q. By Proposition 5.6 we have e; > 3v;/2 and e; > v;
for each j € [t — 1]. Suppose type(i) = (B3), and fix j € [t — 1] \ {i}. We have

§ = ma(Cy) > m(G) = 44 Zae[t—1] €q o 4+3+e; + Zae[t—l]\{i,j} 304 /2
2 4 4 + Zae[tfl] (U o 4 + 1 —+ ’Uj + Zae[tfl]\{i,j} Vo

)

2

so vj > 2(e; —vj) — 1. Hence v; > 2 (because v; < e;) and type(j) = (As). O

Proof of Theorem 5.8. If C is anti-directed or contains a long block, then G /4 c
by Corollary 5.3 and Lemma 5.4, respectively. We may therefore assume C has pre-
cisely two blocks of length 2; we may also assume that G is a C4-component with
construction sequence (Hq, ..., H;), because distinct Cy-components can be indepen-
dently oriented and edges in no Cy-component can be arbitrarily oriented.

If there is no step of type (Bs), then G is bipartite. (Indeed, H; ~ C4 and steps
of type (Az), (As), or (A4) preserve bipartiteness.) Fix a proper 2-coloring of G
and orient every edge toward the same color class. This avoids directed paths with
length 2, so G 4 C.

On the other hand, if type(i) = (Bs), then every other step is of type (As2)
by Proposition 5.9. Let wjususzusu; be the new cycle in H;yq, where ujus € H;
(and ugus, usug, uguy ¢ E(H;), ur,uz,us € V(H;), ug ¢ V(H;)). We may assume
that Hy is a 4-cycle uyuqabu;.

If there is a unique new 4-cycle in H; 1, then it suffices to orient H; as a directed
cycle and the new edges in each step as directed paths. Clearly H; has a long block
and, for each o € [t — 1], every new 4-cycle in H,41 contains a long block (formed
by Qa), so G 4 C.

Finally, if a 4-cycle in H;41 contains usug but avoids ususui, then we may re-
place the ith step (of type (Bs)) by one (Ay4)-step (adding ugug) and one (As)-step
(adding usuqui). This yields a construction sequence free from (Bs), which implies
(as argued above) that G is bipartite and G 4 C. Similarly, if H;,1 contains a new
4-cycle which avoids ugug, then we may replace the ith step by one (As)-step (adding
usuguy) and one (Ay)-step (adding ugus) and also conclude that G 4 C. d
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5.3.2. Cycles of length at least 5. We now generalize Theorem 5.5 for oriented
cycles with at least 5 vertices.

THEOREM 5.10. Let C be an_orientation of Cy, where £ > 5. If G is a graph
and m(G) < ma(Cy), then G 4 C.

We use the following results.

Remark 5.11. Let G be a Cs-component. If G can be constructed solely by steps
of type (As), then every cycle in G has length congruent to 2 (mod 3).

Proof. The proof is by induction on ¢ € [¢t] where (Hj, ..., H;) is the construction
sequence of G. The base holds because H; is a 5-cycle. Now suppose every cycle
in H; has length congruent to 2 (mod 3), where i > 1. We form H;;; by a step of
type (As), i.e., by adding a 5-path P joining the endvertices of an edge uv of H;. Any
new cycle C is formed by an uv-path P’ in H;, together with P. If P’ = ww, then C has
length 5, and the claim holds. On the other hand, if uwv ¢ E(P’), then C = P’ U P,
but since ¢’ := P’ + uwv is a cycle in H;, it follows that e(C’) = 2 (mod 3), so
e(C)=e(P)+e(P)=e(C') —1+¢e(P)=2 (mod 3). O

Remark 5.12. Let G be a Cs-component. If G is constructed solely by steps of
the types (A2) and (Ajz), then G contains no C3 and no Cjy.

Proof. Let (Hi,...,H;) be a construction sequence of G. Note that C3 ¢ G:
indeed, C3 ¢ H; since Hy is a Cs; moreover, for each i € [t—1] we have H; 1 = H;UQ;,
and @; is a path of length at least 3 which is internally disjoint from H;, so C3 € H; 1.

Similarly Cy ¢ Hy, and if H;UQ; contains a Cy, then type(i) = (As), so z; and z;
are connected by a path z;wz; in H; (which, together with @;, creates a C5). But
then z;wz;x; is a C3 in G, a contradiction. 0

We are now in position to prove the main result of this section.

Proof of Theorem 5.10. Let G be a graph with m(G) < (¢ —1)/(¢ — 2), where
¢ > 5, and let C be an oriented {-cycle. By Lemma 5.4, if C contains a long block,
then G 4 C, so we may assume that every block of C has length at most two. We
will show that the Cp-components of G admit an orientation in which every /¢-cycle
has a long block. It suffices to consider one such component F, as Cp-components
can be independently oriented (they do not share edges) and remaining edges can be
arbitrarily oriented (each ¢-cycle in G lies in some Cy-component).

Let F be a Cyp-component (Hy, ..., H;) of G. Hence, for all i € [t—1], each ¢-cycle
C C H;11 which did not exist in H; contains either the subpath z;Q;y; or y;Q;z; (if Q;
intersects H; in three vertices) or the whole new path @Q;. (We write aPb to denote
the subpath of P whose endvertices are a and b.)

Case 0. For each ¢ € [t — 1] we have type(i) € {4; :2 < j <{—1}.

For each i € [t — 1], every new cycle in H;y; contains @Q; and e(Q;) > 3. We
construct an orientation of F which avoids C' as follows. Fix a directed orientation
of Hy, and for each ¢ € [t — 1] fix a directed orientation of @;. Clearly H; does not
contain 67 and for each ¢ € [t — 1] every new f-cycle in H;,; contains a long block
(since Q; is directed), so F 4 C.

Case 1. There is precisely one index i € [t — 1] such that type(i) = (A¢—1).

Let Q; = x;vz;, and let C' be an f-cycle in H; containing z;. We may assume
that H; = C. Note that e(Q;) > 3 for each j € [t — 1]\ {¢} since (by Proposition 5.7)
type(j) € {(As2), (43), (A4)} and also £ > 6 if type(j) = (A4) for some j. We orient F'
as follows.
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Firstly, orient H; so that z; is the origin of a long block, and so that z; has
no inneighbors in H;. Secondly, for each j € [i — 1], orient Q; forming a directed
path, while ensuring that z; has no inneighbors in Hj;. (This is possible since, if
@Q; contains z;, then z; is an endvertex of Q;.) Orient @; as a directed path from z;
to z;. Finally, for each j € [t — 1]\ [¢] orient @), so as to form a directed path.

Clearly, the orientation of Hy avoids C. Since e(Q;) > 3 for each j € [t — 1]\ {i},
each new f-cycle in H;;, has a long block (as it contains @;). Finally, every new
cycle C in H;y1 must contain @; as well as some edge z;2 € E(H;). As z; has no
inneighbors in H;, the edge z;z extends the directed path z; — v — z;, forming a
long block in C'. This shows that every ¢-cycle has a long block, so F' /4 C.

Case 2. There exists i € [t — 1] such that type(i) = (Ay).

Let o € [t — 1]. By Proposition 5.7, if o # i, then type(a) € {(Az2), (A43)}, so
e(Qq) > 3. We may assume that H; is an ¢-cycle in H; containing z;. We orient the
edges of F as follows. Let N be the set of neighbors of z; in H;.

First orient H; with two blocks of length at least 2 and origin z; (see Figure 1).
Next, for each j € [i—1], we do the following. If no endvertex of Q; lies in {z;}UN, fix
an arbitrary directed orientation of Q;. If a single endvertez q of Q; lies in {z;} UN,
then orient @; to form a directed path with origin ¢. If both endvertices q,r of Q;
lie in {z;} U N, where we assume r # z;, then orient @); so that it has precisely two
blocks, starting from ¢ and r, and so that the latter has precisely one arc. Finally,
orient x; — z;, and for each j € [t—1]\[¢] fix a directed orientation of Q; (see Figure 1).

Let us check that every f-cycle in F' has a long block. This is clearly true in H;.
Now suppose o € [t — 1] \ {i}. Note that each new cycle in H,4; contains @, and
that e(Qq) > 3 since type(a) € {(A2), (As)}. Moreover, @, has a block of length
at least e(Qq) — 1 if & < i, and a block of length at least e(Q4) if @ > i. Hence, if
e(Qq) > 4 or if o > i, then @, has a long block. So we may suppose that £ = 5,
e(Qa) = 3, and a € [ — 1]. Hence type(a) = (A3), and there is precisely one new
5-cycle C in H,41 (as otherwise two 3-paths joining z, and z,, would form a 4-cycle
in H,, contradicting Remark 5.12). If [{zq,2a} N ({2z:} UN)| < 1, then C has a
long block containing Q.. Otherwise, {z4, 2o} C {2;} U N. Note that z,2z, C H,
for some z € V(H,) since C C Hyy1; if z; € {Za, 20}, then z42, € E(H;), so
TaZa?Te 18 a triangle in H;, contradicting Remark 5.12. Therefore z; ¢ {xa,za},
0 C = Qa U xazizo (since z # z; implies x,224724 is a 4-cycle in H;, which
contradicts Remark 5.12). Since @, has a directed 3-path from either z, or z, to
a vertex w € V(Qq,) \ V(Hy,), and both z, and z, are outneighbors of z;, it follows
that C has a long block.

To conclude Case 2, we consider the new f-cycles in H;;1. Each of these cycles
contains the arc z; — z;, so it suffices to show that every 3-path z;zw in H; (where

N
s N,

a

7

()
r

. ./
=,
q

Fic. 1. Orientations in Case 2. Left: orientation of Hyi; note Hi has a long block starting
from z; (since £ > 5). Center and right: orientations of Qo (where o # i); in the figure, a ¢ {z; }UN,
r €N, and q € {z;} UN, where N := Np, (z;).
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x; ¢ {z,w}) is directed from z; to w. Note that for each j € [i — 1] and each pair
of distinct new edges ey, ex in Hjy;, there exist distinct new vertices vy € e, v2 € €2
in Hjq1. It follows that either z;zw C H;p (if no edge of z;zw lies in some Q; with
j€li—1]);or ziz € Hy and zw C @, and z is an endvertex of @, for some a € [i —1]
(if each @; contains at most one edge of z;zw); or z;zw C Qg and z; is an endvertex
of Qg for some B € [i — 1] (if some Qg contains all edges of z;zw). In each of these
cases z;zw has the required orientation.

Hence every f-cycle of F' has a long block and F' /4 C.

Case 3. There exist i, € [t — 1] such that type(i) = type(j) = (A¢—1).

By Proposition 5.7 we have ¢ = 5 and type(a) = (As) for each a € [t — 1]\ {4, j}.
We may suppose ¢ < j. Let P = zusuzz; € H; and Q = xjvov3z; € Hj, and
let @Q; = zsusz; and Q; = x;v52;. By Remark 5.11, every cycle in H; has length
congruent to 2 modulo 3, so H; contains no C3, no Cy4, and no Cg. In particular, since
the union of two distinct 4-paths with common ends contains a cycle with one of these
lengths (see Figure 2), we conclude that P is the unique 4-path between z; and z;
in H; and hence the unique such path in H;;,. The argument splits into three cases
according to how the 5-cycles in H; intersect P.

Case (a). There exists a 5-cycle C'in H; containing P.
We may assume that H; = C = x;ususz;zx; and that Hy = H;11 = C U x;us2;,
so i = 1. We first prove that

(5.1) H; contains no C, no Cs, and precisely one Cy.

Crucially, note that a step of type (As) cannot create a C3 or a Cy. Therefore,
since H; ~ C5, each C5 and each C4 in H; were created in the ith step resulting
in H;y1. Since H;y1 is the union of C' and z;usz;, we conclude that Cj Q H;.q,
so (3 g Hj; moreover, the unique Cy C H; is x;x2;us2;. It remains to show that H;
contains no Cg. Suppose, looking for a contradiction, that « € [j — 1] is the smallest
index such that H,1 has a 6-cycle C'. Note that H; 1 contains no Cg, so a > i.
Since type(a) = (As), it follows that C’ contains a path abede whose edges are new
in Hyt1, so C' = abedefa for some f € V(H,). Moreover, abedea is a (new) 5-cycle
in Hyt11. We conclude that aefa is a 3-cycle in H,, which is a contradiction since
Cs ¢ H;. This proves (5.1).

CLAIM 5.13. There exists e € E(H;) with e N {xzj,z;} # 0 which lies in every
4-path from x; to z; in Hj.

Proof. By (5.1), every 4-path between z; and z; in H; other than @ inter-
sects z;vov3z; (i.e., Q) in precisely one edge h; moreover, h # vous (as C3 ¢ Hj;
see Figure 2). If Claim 5.13 is false, then there are paths z;zv3z; and x;veyz; in H;
with z # vy and y # vs. But this contradicts (5.1), because then either H; has a
3-cycle z;xvox; (if x = y) or H; contains distinct 4-cycles x;xvsver; and vavsz,yvs
(if z # y). |

.\. — ./. .\. — ./. .\. — ./. .\. — ./.

Fic. 2. Unions of distinct 4-paths with common endvertices.
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We now return to the proof of Case (a), describing the orientation of F. Let e
be the edge common to all 4-paths between z; and z; in H; (as per Claim 5.13).
Orient H; so that it is a directed cycle. For every a € [t — 1] \ {j}, orient the new
edges to form a directed path. Finally, orient x;vs52; so that the path it forms with e
is directed.

Let us check that every 5-cycle in F' has a long block. Clearly, the two 5-cycles
in Hj have each a long block. For each o € [t — 1]\ {4, j}, each new 5-cycle in Hq 41
contains (), and hence has a long block (e(Qn) > 3 since type(a) = (Asz)). Finally,
every new 5-cycle in H;4, contains the directed path formed by e and x;vsz;. We

conclude that F /4 C.

Case (b). There exists a 5-cycle C' in H; containing precisely two edges of P.

We may assume that no 5-cycle in H; contains all edges of P; otherwise we would
be done by Case (a). Note that C' cannot avoid ugus, since Cs € H;. We may therefore
assume that C' is a 5-cycle in H; with z;ugus C C and that H; = C.

Let a € [t — 1] be such that ugz; is new in H,41, and let C, be a new 5-cycle
in H,q1 containing usx;. Note that type(a) = (A2), so Qo = usz;zyv, where
ug,v € V(H,) and x;, 2,y ¢ V(H,). We modify the construction sequence of F
to a construction sequence of F' where the ith step is omitted and the ath step is
replaced by consecutive steps adding, in this order, usz;usz; and x;xyv. In the new
sequence, type(a) = type(a + 1) = (As), type(j) = (44) = (Ar—1), and each other
step remains of type (As). By the argument in Case 2, F /4 C.

Case (c). Every 5-cycle in H; contains at most one edge of P.

This is similar to the preceding case. Let C' = H; be a 5-cycle containing z;us.
We first show that if usus is new in H,41 and usx; is new in Hgiq, then o < 3 < i.
(Note that for all j € [i — 1] every edge in H; lies in a 5-cycle.) Indeed, o, 8 < ¢ by
definition, and a # [ as otherwise a cycle in H,; would contain two edges of P.
Moreover, type(a) = type(8) = (Az2) by Proposition 5.7, so each new edge in H, 41
and Hg;q contains at least one new endvertex. Hence a < f3.

Let Q3 = uox;xyv, where ug,v € V(Hp) and z;,z,y ¢ V(Hg). As in Case (b),
we define an alternative construction sequence of F', where the ith step is omitted
and the Sth step is replaced by consecutive steps adding usz;usz; and z;zyv (in this
order). By Case 2, F /4 C.

Case 4. There exists ¢ € [t — 1] such that type(i) = (B;), where 3 < j < {¢—1.

By Proposition 5.7, for each a € [t — 1] \ {i} we have type(a) = (A42), and thus
e(Qq) > 3. Recall that y; € V(Q;) N H;. Note that no new cycle in H;+1 avoids
both z;Q;y; and y;Q;z;.

If a new ¢-cycle in H; 1 contains z;Q;y; but not y;Q;z;, then there exists an alter-
native construction sequence of F' which satisfies the hypothesis of one of the previous
cases, and hence and F' /4 C: indeed, we may replace the ith step in (Hy,..., H;) by
consecutive steps adding x;Q;y; and y;Q;z; (a similar exchange appears at the end of
the proof of Theorem 5.8). We argue similarly if a new ¢-cycle in H; 1 avoids z;Q;y;.

If every new {-cycle in H;; contains all of @;, then for each a € [t — 1] every new
cycle in H,41 contains @,. We fix a directed orientation of H; and orient @, as a
directed path for each o € [t —1]. Then H; has a long block, and for all « € [t —1] the
new /-cycles in Hyy1 have a long block as well (since e(Qn) > 3). Hence, F 4 C. O

6. Proof of the main theorem (Theorem 2.1). Theorem 4.1 establishes
the case t = 3 of Theorem 2.1. We may therefore suppose H is either an acyclic
orientation of H € {Ky,C;}, with ¢t > 4, or that H is an anti-directed orientation of a

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/15/25 to 143.107.45.1 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

2856 BARROS, CAVALAR, KOHAYAKAWA, AND NAIA

strictly 2-balanced graph H with §(H) > 2. In each one of these cases H is 2-Ramsey-
avoidable (by Remark 3.3), so (by Theorems 1.1 and 2.2 together with Lemmas 3.2
and 3.4) it suffices to show that G 4 H whenever m(G) < my(H). Indeed, this
follows by Theorem 5.1 (when H is complete), by Theorems 5.8 and 5.10 (when H is
a cycle), and by Corollary 5.3 otherwise.

7. Concluding remarks. We have shown that if H is an oriented clique or cycle,

then the threshold for G(n,p) — H is n~Y/me(H) except if H ~ TT;. Interestingly,

TT5 is not the only oriented graph whose threshold is not of the form n—!/ ma(H)

For instance, fix € > 0, and construct G from an oriented tree T of order nl/2—¢ by
identifying with each v € V(T') the source of a distinct copy H, of TTs. It can be
—1/m2(G) — p=1/m2(TTs) Iy o forthcoming paper, the authors
—1/m2(G)

shown that pz < n
describe a richer class of oriented graphs G for which pa<n
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