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Abstract. If G is a graph and \vec{}H is an oriented graph, we write G \rightarrow \vec{}H to say that every
orientation of the edges of G contains \vec{}H as a subdigraph. We consider the case in which G is the
binomial random graph G(n, p), establishing the threshold p \vec{}H

= p \vec{}H
(n) for the property G(n, p) \rightarrow \vec{}H

for the cases in which \vec{}H is an acyclic orientation of a complete graph or of a cycle.
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1. A Ramsey-type property. For each (undirected) graph G and oriented

graph \vec{}H, we write G \rightarrow \vec{}H to mean that every orientation of G contains a copy of \vec{}H;
the orientation Ramsey number \vec{}R ( \vec{}H) is inf\{ n : Kn \rightarrow \vec{}H \} . Note that every graph G

admits an acyclic orientation, and hence G \not \rightarrow \vec{}H if \vec{}H contains a directed cycle; more-
over, since large tournaments contain large transitive subtournaments, \vec{}R ( \vec{}H) < \infty if
\vec{}H contains no directed cycles. The orientation Ramsey number has been investigated
in a number of articles [31, 32, 14, 8, 34, 23, 33, 15, 24, 25, 26, 16, 13, 21, 22, 27, 12]
among others, most of which concern a conjecture of Sumner [34]. Sumner's universal

tournament conjecture states that \vec{}R (\vec{}T ) \leq 2e(\vec{}T ) for every oriented tree \vec{}T ; this has
been confirmed for all sufficiently large trees by K\"uhn, Mycroft, and Osthus [22, 21];
see also [1, 28].

Thresholds. Thresholds for Ramsey-type properties are widely studied as well
(see, e.g., [17, 29] and the many references therein). We call p \vec{}H = p \vec{}H(n) a threshold

for G(n, p) \rightarrow \vec{}H if

lim
n\rightarrow \infty 

\BbbP 
\bigl[ 
G(n, p) \rightarrow \vec{}H

\bigr] 
=

\Biggl\{ 
0 if p \ll p \vec{}H ,

1 if p \gg p \vec{}H ,

where a \ll b (or, equivalently, b \gg a) means limn\rightarrow \infty an/bn = 0. As is customary,

we speak of ``the threshold p \vec{}H ,"" since p \vec{}H is unique within constant factors. If \vec{}H is

acyclic, then the property G(n, p) \rightarrow \vec{}H is nontrivial and monotone, and hence [3] it
has a threshold p \vec{}H = p \vec{}H(n). An upper bound for p \vec{}H = p \vec{}H(n) involving the so-called
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maximum 2-density of \vec{}H is proved in [7], following methods in [30]. For any graph or
oriented graph G, the maximum density and (when v(G) \geq 3) the maximum 2-density
of G are, respectively,

m(G) := max
J\subseteq G

v(J)\geq 1

e(J)

v(J)
and m2(G) := max

J\subseteq G
v(J)\geq 3

e(J) - 1

v(J) - 2
.

Theorem 1.1 (see [7]). Let \vec{}H be an acyclically oriented graph. There exists

a constant C = C( \vec{}H) such that if p \geq Cn - 1/m2( \vec{}H), then \BbbP 
\bigl[ 
G(n, p) \rightarrow \vec{}H

\bigr] 
\rightarrow 1 as

n \rightarrow \infty .

We remark in passing that the regularity method can be used to give an alternative
proof for Theorem 1.1 (such a proof would combine ideas from [17, section 8.5] and,
say, [10]).

2. Contribution. We establish the orientation Ramsey threshold for all acyclic
orientations of the complete graphKt and cycle Ct, for each t \geq 3, as well as for certain
oriented bipartite graphs. We call a digraph \vec{}H anti-directed if each vertex in \vec{}H has
either no inneighbours or no outneighbors (so \vec{}G is bipartite and all arcs point to the
same part). We call a graph H strictly 2-balanced if v(H) \geq 3 and the only subgraph
of H attaining its maximum 2-density is H itself (i.e., (e(J) - 1)/(v(J) - 2) < m2(H)
for each proper subgraph J \subseteq H with v(J) \geq 3).

Theorem 2.1. If \vec{}H is an acyclic orientation of Kt or Ct, then

p \vec{}H(n) =

\Biggl\{ 
n - 1/m(K4) if t = 3,

n - 1/m2( \vec{}H) if t \geq 4

is the threshold for G(n, p) \rightarrow \vec{}H. Moreover, if \vec{}H is an anti-directed orientation of a
strictly 2-balanced graph H such that \delta (H) \geq 2 and m2(H) - \lfloor m2(H)\rfloor \leq 1/2, then

p \vec{}H(n) = n - 1/m2( \vec{}H)

is the threshold for G(n, p) \rightarrow \vec{}H.

The fact that the case t = 3 is ``different"" from the t \geq 4 cases suggests that the
problem of determining p \vec{}H = p \vec{}H(n) for general \vec{}H may be hard. Indeed, the t = 3

case can be used to produce other \vec{}H for which p \vec{}H \ll n - 1/m2( \vec{}H); see section 7 for
further comments in this direction. A similar phenomenon has been observed in the
context of a different Ramsey type property [18, 20].

In view of Theorem 1.1, to prove Theorem 2.1 (except for the case in which \vec{}H is an
orientation of K3), it suffices to prove the so called 0-statement, that is, it is enough to

show that if p \ll n - 1/m2( \vec{}H), then G(n, p) \rightarrow \vec{}H holds with vanishing probability. Our
proof of this 0-statement uses recent advances in the study of Ramsey-type thresholds:
a framework developed by Nenadov et al. [29] (outlined below) and structural results
of Barros et al. [2].

We need only a simplified version of the results in [29] (see Definitions 10 and 11
in [29]). Let G and H be graphs, where \delta (H) > 1. An edge e \in E(G) is H-closed
if e belongs to at least two copies of H in G. A copy of H in G is H-closed if at
least three of its edges are H-closed, and G is H-closed if all vertices and edges of G
lie in H-closed copies of H. Finally, G is an H-block if G is H-closed and for each
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2846 BARROS, CAVALAR, KOHAYAKAWA, AND NAIA

proper nonempty subset E\prime \subsetneq E(G) there exists a copy H \prime of H in G such that
E(H \prime ) \cap E\prime \not = \emptyset and E(H \prime ) \setminus E\prime \not = \emptyset .

Theorem 2.2 (see [29, Corollary 13]). Let H be a strictly 2-balanced graph with
at least 3 edges such that H is not a matching. If p \ll n - 1/m2(H), then with high
probability every H-block F of G(n, p) satisfies m(F ) < m2(H).

Since complete graphs and cycles are strictly 2-balanced, Theorem 2.2 reduces
the proof of the 0-statement in Theorem 2.1, except in the case t = 3, to showing
that G \not \rightarrow \vec{}H for every graph G whose H-blocks have maximum density strictly be-
low m2(H). This is achieved for cycles using results from [2], whereas for tournaments
and anti-directed graphs, as well as for the case t = 3 of Theorem 2.1 we use ad hoc
methods (see Theorems 4.1, 5.1, and 5.2). Theorem 2.1 is proved in section 6.

Remark. Other Ramsey-type properties for directed graphs include requiring
copies to be induced [9, 19, 4] and allowing colorings plus orientations [5, 6].

3. Auxiliary definitions and results. We use standard notation (see, e.g., [17,
11]). A k-path is a path with k vertices; k-cycles are defined similarly. A directed
k-path is an oriented path v1 \rightarrow \cdot \cdot \cdot \rightarrow vk. A directed k-cycle is oriented as v1 \rightarrow 
\cdot \cdot \cdot \rightarrow vk \rightarrow v1. Let \vec{}G be an oriented graph. A maximal directed path in \vec{}G is called
a block. A path or block is long if it has at least 3 edges. A graph G is k-degenerate
if for all J \subseteq G the minimum degree \delta (J) is at most k. We use the following simple
fact.

Lemma 3.1. Every graph G with at least one vertex is 2m(G)-degenerate.

LetG andH be graphs, and let \vec{}H be an orientation ofH. We denote by \scrC H(G) the
edge intersection graph of H in G, whose vertices correspond to copies of H in G and
whose edges join distinct copies which share a common edge in G. An H-component is
a subgraph of G formed by the union of all copies of H in some connected component
of \scrC H(G). Note that G \not \rightarrow \vec{}H if and only if each H-component of G admits an \vec{}H-free
orientation. Let G and H be graphs, and let C be an H-component of G. If H1 is
an arbitrary copy of H in C, then there exists a sequence H1 \subseteq H2 \subseteq \cdot \cdot \cdot \subseteq Ht = C
with the following property. For each i \in [t  - 1], there exists a copy H \prime of H such
that H \prime \not \subseteq Hi, E(H \prime ) \cap E(Hi) \not = \emptyset and Hi+1 = Hi \cup H \prime . We say that (H1, . . . ,Ht)
constructs C, and call (H1, . . . ,Ht) a construction sequence of C. For each i \in [t - 1],
we say that a vertex or edge of Hi+1 is new in Hi+1 if it is not contained in Hi and
say that F \subseteq Hi+1 is new (in Hi+1) if F contains a new edge in Hi+1. Moreover, if
H \prime 

1 is a copy of H in Hi, then there exists a construction sequence (H \prime 
1, . . . ,H

\prime 
j) of Hi

starting with H \prime 
1 and hence a construction sequence (H \prime 

1, . . . ,H
\prime 
j , Hi+1, . . . ,Ht) of C.

Let G be a graph, and suppose E \subseteq E(G). We write G[E] for the subgraph of G
consisting of the edges in E and the vertices in G which are incident with those edges.

Lemma 3.2 (see [29, Lemma 14]). Let G and H be graphs. If G is H-closed,
then E(G) admits a partition \{ E1, . . . , Ek\} such that G[E1], . . . , G[Ek] are H-blocks
and each copy of H in G lies entirely in one of these H-blocks.

Let \vec{}H be an orientation of a graph H. We say \vec{}H is 2-Ramsey-avoidable if for all
e, f \in E(H), every orientation of e, f can be extended to an \vec{}H-free orientation of H.

Remark 3.3. Let k \geq 4. If \vec{}H is either an orientation of Ck, an acyclic tournament
of order k, or an anti-directed orientation of a graph H with \delta (H) > 1, then \vec{}H is
2-Ramsey-avoidable.
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Proof. Let H be the underlying graph of \vec{}H. In each of the following cases, let
e, f \in E(H) be chosen and oriented arbitrarily; it suffices to complete an \vec{}H-free
orientation of H.

Suppose \vec{}H is an orientation of Ck. Note that we can complete the orientation
of e, f to orientations \vec{}C1, \vec{}C2 of Ck such that \vec{}C1 has a block of length at least k - 1 \geq 3
and \vec{}C2 has no long block. If \vec{}H has a block of length at least k  - 1, then we pick \vec{}C2;
else we pick \vec{}C1.

If \vec{}H is an acyclic orientation ofKk, we complete the orientation so that it contains
a directed triangle (some triangle in H has at most one edge already oriented).

In the remaining case (anti-directed graph), we complete the orientation of H
forming a directed 3-path (since k \geq 4, some v \in V (H) is incident with precisely
one of e, f , while \delta (H) > 1 implies some other edge incident with v has not been
oriented).

Remark 3.3 will be used with the next lemma and Theorem 2.2 to establish our
main results.

Lemma 3.4. Let G be a graph, and let \vec{}H be 2-Ramsey-avoidable. If B \not \rightarrow \vec{}H for
each H-block B of G, then G \not \rightarrow \vec{}H.

Proof. Let H be the underlying graph of \vec{}H. To show that G admits an \vec{}H-free
orientation, we may assume each edge of G lies in a copy of H (the orientation of
other edges is irrelevant).

Let G0 = G and, for each i = 1, 2, . . . proceed as follows. If Gi - 1 is H-closed,
then stop, set m := i - 1 and F := Gm. Otherwise, some copy Fi of H in Gi - 1 has at
most two H-closed edges in Gi - 1. Form Gi by deleting from Gi - 1 each non-H-closed
edge of Fi and then each isolated vertex. Note that Gi - 1 = Gi \cup Fi and that each
e \in E(Gi) lies in some copy of H.

Note that F is H-closed. By Lemma 3.2, F can be partitioned into a collection \scrB 
of edge-disjoint H-blocks such that each copy of H in F lies entirely in some B \in \scrB .
By assumption, B \not \rightarrow \vec{}H for each B \in \scrB , so F admits an \vec{}H-free orientation \vec{}F (the

disjoint union of \vec{}H-free orientations of each B \in \scrB ).
Finally, we extend \vec{}Gm := \vec{}F to an \vec{}H-free orientation \vec{}G0 of G. For each i, from m

to 1, let \vec{}Gi - 1 extend \vec{}Gi by orienting the edges E(Fi)\setminus E(Gi) so that Fi is \vec{}H-free (this

is possible because \vec{}H is 2-Ramsey-avoidable). Clearly, no copy of H in G induces \vec{}H

in \vec{}G, so G \not \rightarrow \vec{}H.

4. Transitive triangles. Let TT3 be the transitive triangle. In this section we
show that the upper bound for pTT3(n) given in Theorem 1.1 is not tight.

Theorem 4.1. The threshold for G(n, p) \rightarrow TT3 is pTT3(n) = n - 1/m(K4).

Let W5 be the wheel graph obtained from C4 by adding a new vertex joined to
all others. We prove the 0-statement of Theorem 4.1 using a structural property of
K3-components.

Proposition 4.2. If G is a K3-component with uw, vw \in E(G) and uv /\in E(G),
then there exists J \subseteq G such that either v(J) = 6 and e(J) = 9 or J+uv is isomorphic
to K4 or W5.

We write F \simeq G to mean that the graphs F and G are isomorphic.

Proof. Let F1 \cdot \cdot \cdot Fs be a shortest path in \scrC K3(G) such that uw \in E(F1) and
vw \in E(Fs). It suffices to show the following.
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\bullet If s = 2, then J := F1 \cup F2 satisfies J + uv \simeq K4.
\bullet If s = 3, then J := F1 \cup F2 \cup F3 satisfies J + uv \simeq W5.
\bullet If s \geq 4, then J := F1 \cup F2 \cup F3 \cup F4 satisfies v(J) = 6 and e(J) = 9.

It is simple to check that the following hold by the choice of F1 \cdot \cdot \cdot Fs.
(i) | E(Fi) \cap E(Fi+1)| = 1 for all i \in [s - 1];
(ii)

\bigm| \bigm| E(Fi+1) \cap 
\bigcup 

j\in [i] E(Fj)
\bigm| \bigm| = 1 for each i \in [s - 1]; and

(iii) each e \in E(G) belongs to at most two triangles in F1 \cup \cdot \cdot \cdot \cup Fs.
The statement for s = 2 follows by item (i) since F1 \simeq K3. If s = 3, then v(J) = 5
(by items (i) and (ii)), so J + uv \simeq W5. Again by item (i), for each i \in [s  - 1] we
have | V (Fi+1) \setminus 

\bigcup 
j\in [i] V (Fj)| \leq 1, so v(F1 \cup \cdot \cdot \cdot \cup Fs) \leq s + 2. Moreover, item (ii)

implies e(F1 \cup \cdot \cdot \cdot \cup Fi) = 2i + 1 for each i \in [s]. If s \geq 4, then e(J) = 9. Clearly
5 \leq v(J) \leq 6; note that v(J) \not = 5 as otherwise there exists e \in E(J) which belongs to
three distinct triangles in J , contradicting item (iii).

Let (H1, . . . ,Ht) be a K3-component. For each i \in [t  - 1], either (A) there
are two new edges in Hi+1 and one new vertex in Hi+1; (B) there are two new
edges in Hi+1 and V (Hi+1) = V (Hi); or (C) there is exactly one new edge in Hi+1

and V (Hi+1) = V (Hi). A graph H is AB-constructible if no construction sequence
of a K3-component of H contains a step of type (C).

Proposition 4.3. If a graph H is AB-constructible, then H \not \rightarrow TT3.

Proof. We may assume that H is itself a single K3-component (H1, . . . ,Ht), as
edges which do not belong to a copy ofK3 inH can be arbitrarily oriented and distinct
K3-components may be independently oriented. First note that, at each step, exactly
one new copy of K3 is added. This is clearly true for steps of type (A). Moreover, it
is easy to see that if H\alpha +1 is created by a step of type (B) and the new edges create
two distinct copies of K3 in H\alpha +1, then H admits a construction sequence with a step
of type (C), a contradiction. We orient H1 forming a directed triangle and, for each
\alpha \in [t  - 1], orient the two new edges in H\alpha +1 so as to form a new directed triangle.
The resulting orientation is TT3-free.

Our final ingredient is the following classical result (see, e.g., [17]).

Theorem 4.4 (see [17]). Let H be a fixed graph. Then

lim
n\rightarrow \infty 

\BbbP [H \subseteq G(n, p)] =

\Biggl\{ 
1 if p \gg n - 1/m(H),

0 if p \ll n - 1/m(H).

Proof of Theorem 4.1. If p \gg n - 2/3, then K4 \subseteq G(n, p) with high probability
by Theorem 4.4; hence G(n, p) \rightarrow TT3 with high probability (as K4 \rightarrow TT3). Now
suppose that p \ll n - 2/3, and let \scrE be the event ``G(n, p) is not AB-constructible.""
By Proposition 4.3, it suffices to show that \BbbP [\scrE ] = o(1). Let \scrJ be set of all non-
isomorphic graphs of order 6 and size 9. By Proposition 4.2, every K3-component
of G(n, p) which is not AB-constructible contains either K4, W5, or some J \in \scrJ .
Using Markov's inequality, we have

\BbbP [\scrE ] \leq \BbbP [K4 \subseteq G(n, p)] + \BbbP [W5 \subseteq G(n, p)] +
\sum 
J\in \scrJ 

\BbbP [J \subseteq G(n, p)]

\leq 
\sum 

J\in \{ K4,W5\} \cup \scrJ 

\BbbE 
\bigl[ 
| \{ J \prime \subseteq G(n, p) : J \prime \simeq J\} | 

\bigr] 
\leq n4p6 + n5p8 + | \scrJ | n6p9.

Since p \ll n - 2/3 and | \scrJ | = \Theta (1), we have \BbbP [\scrE ] = o(1).
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5. Graphs with low maximum 2-density. The following sections show that
G \not \rightarrow \vec{}H for some classes of oriented graphs when \vec{}H has at least four vertices and
m(G) < m2( \vec{}H).

5.1. Transitive tournaments. We denote a tournament on k vertices by Tk,
writing TTk if it is transitive.

Theorem 5.1. If k \geq 4 and G is a graph with m(G) < m2(Kk), then G \not \rightarrow TTk.

Proof. The proof is by induction on n := v(G). The case n < 4 is trivial.
Assume n \geq 4 and that G\prime \not \rightarrow TTk whenever m(G\prime ) < m2(Kk) and v(G\prime ) < n.
By Lemma 3.1, degG(u) \leq k for some u \in V (G). Let G\prime = G - u, so m(G\prime ) < m2(Kk)

and G\prime admits a TTk-free orientation \vec{}G. We shall extend \vec{}G to an orientation of G
such that each Tk containing u has a directed cycle.

We may assume that u lies in some copy of Kk, say K; so deg(u) \geq k  - 1. If K
is the only copy of Kk containing u, then choose two vertices v, w \in V (K  - u) and
orient the edges uv and uw so that \{ u, v, w\} induces a directed triangle. Otherwise
let K \prime be some Kk containing u other than K. Hence we must have deg(u) = k. Let v
be the unique vertex in V (K) \setminus V (K \prime ), and w be the unique vertex in V (K \prime ) \setminus V (K).
Since k  - 2 \geq 2, there are at least two vertices x and y in V (K \cap K \prime ) \setminus \{ u\} . Orient
the edges uv, ux, uw, and uy so that each of \{ u, v, x\} and \{ u,w, y\} induces a directed
triangle. Since every Kk containing u has at least three vertices in \{ v, w, x, y\} , the
partial orientation of each Kk contains a directed cycle. Any remaining unoriented
edge may be arbitrarily oriented.

5.2. Anti-directed digraphs. We next consider anti-directed orientations of
bipartite graphs such as Kt,t and C2t.

Theorem 5.2. Let G and H be graphs, where \delta (H) \geq 2. If \vec{}H is an anti-directed

orientation of H and m(G) < \delta (H) - 1/2, then G \not \rightarrow \vec{}H.

Proof. We proceed by induction on v(G). If v(G) \leq 2, then G \not \rightarrow \vec{}H. Let
\delta := \delta (H). By Lemma 3.1, there exists v \in V (G) with deg(v) = \delta (G) \leq 2\delta  - 2.

By induction, G - v \not \rightarrow \vec{}H. Fix an \vec{}H-free orientation ofG - v, and orient \lfloor \delta (G)/2\rfloor edges
incident with v toward v and the remaining \lceil \delta (G)/2\rceil edges away from v. Note that
any copy of H in G containing v necessarily has two edges incident with v oriented
in opposite directions, since \delta (H) \geq 2 and \lceil \delta (G)/2\rceil \leq \delta (H) - 1.

Corollary 5.3. Let \vec{}H be an anti-directed orientation of a graph H, where H
is strictly 2-balanced, \delta (H) \geq 2 and m2(H)  - \lfloor m2(H)\rfloor \leq 1/2. For every graph G,

if m(G) < m2(H), then G \not \rightarrow \vec{}H.

Proof. We have (e(H  - u)  - 1)/(v(H  - u)  - 2) < (e(H)  - 1)/(v(H)  - 2) for
all u \in V (H), since H is strictly 2-balanced. It is easy to check that m2(H) < \delta (H),
so \lfloor m2(H)\rfloor + 1 \leq \delta (H). Since m(G) < m2(H) \leq \lfloor m2(H)\rfloor + 1/2 \leq \delta (H)  - 1/2, we
can apply Theorem 5.2.

5.3. Cycles. We now consider orientations of \ell -cycles, where \ell \geq 4. The main
results are Theorems 5.8 and 5.10, which deal with the cases \ell = 4 and \ell \geq 5,
respectively. (We also include a simple proof for the case \ell \geq 7; see Theorem 5.5.)
Recall that a block is long if it has at least 3 edges.

Lemma 5.4. Let \vec{}C be an oriented cycle with a long block. If G is a graph and
m(G) < m2(\vec{}C), then G \not \rightarrow \vec{}C.
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Proof. Note that v(\vec{}C) \geq 4, so m2(\vec{}C) \leq m2(C4) = 3/2. By Lemma 3.1, G is
2-degenerate; hence \chi (G) \leq 3. Fix a proper coloring c : V (G) \rightarrow \{ 1, 2, 3\} , and orient
each edge towards its endvertex with the largest color. This orientation contains no
long block, so G \not \rightarrow \vec{}C.

While the next result is superseded by Theorem 5.10, its proof is much simpler.

Theorem 5.5. Let \vec{}C be an orientation of C\ell , where \ell \geq 7. If G is a graph
and m(G) < m2(\vec{}C), then G \not \rightarrow \vec{}C.

Proof. Let \ell = e(\vec{}C). If \vec{}C contains a long block, then by Lemma 5.4 the theorem
holds; hence, for the remainder of the proof, we may assume that the longest block
of \vec{}C has length at most 2.

Suppose, looking for a contradiction, that the statement is false. Without loss of
generality, let G be a minimal counterexample (with respect to the subgraph relation).

That is, m(G) < m2(\vec{}C), and G \rightarrow \vec{}C, and G\prime \not \rightarrow \vec{}C for each proper subgraph G\prime \subseteq G.
Let W be the set of vertices in G with degree 2.

If there exists an edge uv joining vertices u, v \in W , then (since G is minimal)

uv lies in an \ell -cycle. Moreover, G \setminus \{ u, v\} \not \rightarrow \vec{}C; so there exists an orientation \vec{}G

of G\setminus \{ u, v\} which avoids \vec{}C. Note that each \ell -cycle in G is either completely oriented

in \vec{}G (while avoiding \vec{}C) or contains the three (not yet oriented) edges incident with

either u or v. We extend \vec{}G by orienting these edges so that they form a directed path
or cycle. Since, by assumption, the length of any block of \vec{}C is at most two, it follows
that \vec{}G is an orientation of G avoiding \vec{}C, a contradiction.

Hence no edge of G lies in W . By the minimality of G, every vertex v \in V (G)
lies an \ell -cycle, so \delta (G) \geq 2. Let n := v(G). Since each vertex of W has degree 2,

2| W | + 3(n - | W | ) \leq 
\sum 

v\in V (G)

d(v) = 2e(G) \leq 2m(G)n < 2n
\ell  - 1

\ell  - 2
.

It follows that | W | > n(1 - 2/(\ell  - 2)) and

2

\biggl( 
1 - 2

\ell  - 2

\biggr) 
n < 2| W | \leq e(G) \leq m(G)n =

\biggl( 
1 +

1

\ell  - 2

\biggr) 
n,

which is a contradiction for \ell \geq 7.

The proofs for smaller cycles use a detailed characterization of the construction
sequences of C\ell -components, which was obtained recently by Barros et al. [2]. We
state the first of these results in a slightly modified form (the original has ``\ell \geq 5"" in
place of ``\ell \geq 4,"" but the same proof holds).

Proposition 5.6 (see [2, Proposition 7]). Let \ell \geq 4 be an integer, G be a graph
with m(G) < m2(C\ell ), and (H1, . . . ,Ht) be a C\ell -component of G. The following holds
for every 1 \leq i \leq t  - 1. If C is an \ell -cycle added to Hi to form Hi+1, then there
exists a labeling C = u1u2 \cdot \cdot \cdot u\ell u1 such that exactly one of the following occurs, where
2 \leq j \leq \ell and 3 \leq k \leq \ell  - 1.

(Aj) u1u2 \cdot \cdot \cdot uj is a j-path in Hi and uj+1, . . . , u\ell /\in V (Hi);
(Bk) u1u2 \in E(Hi), u2u3 /\in E(Hi), \{ u3, . . . , u\ell \} \setminus \{ uk\} \subseteq V (Hi+1) \setminus V (Hi), and

uk \in V (Hi).

If (H1, . . . ,Ht) constructs a C\ell -component, then for each i \in [t - 1] the new edges
in Hi+1 form a path (by Proposition 5.6). We denote this path by Qi and write xi, zi
for its endvertices and yi for the sole internal vertex of Qi in Hi if it exists. (Again

D
ow

nl
oa

de
d 

10
/1

5/
25

 to
 1

43
.1

07
.4

5.
1 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ORIENTATION RAMSEY THRESHOLDS 2851

by Proposition 5.6, V (Qi) \cap V (Hi) is either \{ xi, zi\} or \{ xi, yi, zi\} .) We write type(i)
to denote the operation ((Aj) or (Bk), where 2 \leq j \leq \ell and 3 \leq k \leq \ell  - 1) which
constructs Hi+1 from Hi.

Proposition 5.7 (see [2]). Let \ell \geq 5. If G is a C\ell -component (H1, . . . ,Ht) and
m(G) < m2(C\ell ), then for all distinct i, j \in [t - 1] and each k \in \{ 3, . . . , \ell  - 1\} we have
the following.

\bullet If type(i) = (A\ell ), then every other step is of type (A2) or (A3).
\bullet If type(i) = (A\ell  - 1), then every other step is of type (A2), (A3), or (A4).
\bullet If type(i) = type(j) = (A\ell  - 1), then \ell = 5 and every other step is of type (A2).
\bullet If type(i) = (Bk), then every other step is of type (A2).

5.3.1. Cycles of length 4. We first consider orientations of 4-cycles.

Theorem 5.8. If G is a graph such that m(G) < m2(C4) and \vec{}C is an orientation

of C4, then G \not \rightarrow \vec{}C.

To prove Theorem 5.8 we use the following proposition.

Proposition 5.9. Let G be a C4-component (H1, . . . ,Ht) with m(G) < m2(C4).
If type(i) = (B3) for some i, then type(j) = (A2) for each j \in [t - 1] \setminus \{ i\} .

Proof. For each j \in [t  - 1], let vj and ej be, respectively, the number of new
vertices and new edges in Hj+1. By Proposition 5.6 we have ej \geq 3vj/2 and ej > vj
for each j \in [t - 1]. Suppose type(i) = (B3), and fix j \in [t - 1] \setminus \{ i\} . We have

3

2
= m2(C4) > m(G) =

4 +
\sum 

\alpha \in [t - 1] e\alpha 

4 +
\sum 

\alpha \in [t - 1] v\alpha 
\geq 

4 + 3 + ej +
\sum 

\alpha \in [t - 1]\setminus \{ i,j\} 3v\alpha /2

4 + 1 + vj +
\sum 

\alpha \in [t - 1]\setminus \{ i,j\} v\alpha 
,

so vj > 2(ej  - vj) - 1. Hence vj \geq 2 (because vj < ej) and type(j) = (A2).

Proof of Theorem 5.8. If \vec{}C is anti-directed or contains a long block, then G \not \rightarrow \vec{}C
by Corollary 5.3 and Lemma 5.4, respectively. We may therefore assume \vec{}C has pre-
cisely two blocks of length 2; we may also assume that G is a C4-component with
construction sequence (H1, . . . ,Ht), because distinct C4-components can be indepen-
dently oriented and edges in no C4-component can be arbitrarily oriented.

If there is no step of type (B3), then G is bipartite. (Indeed, H1 \simeq C4 and steps
of type (A2), (A3), or (A4) preserve bipartiteness.) Fix a proper 2-coloring of G
and orient every edge toward the same color class. This avoids directed paths with
length 2, so G \not \rightarrow \vec{}C.

On the other hand, if type(i) = (B3), then every other step is of type (A2)
by Proposition 5.9. Let u1u2u3u4u1 be the new cycle in Hi+1, where u1u2 \in Hi

(and u2u3, u3u4, u4u1 /\in E(Hi), u1, u2, u3 \in V (Hi), u4 /\in V (Hi)). We may assume
that H1 is a 4-cycle u1u2abu1.

If there is a unique new 4-cycle in Hi+1, then it suffices to orient H1 as a directed
cycle and the new edges in each step as directed paths. Clearly H1 has a long block
and, for each \alpha \in [t  - 1], every new 4-cycle in H\alpha +1 contains a long block (formed

by Q\alpha ), so G \not \rightarrow \vec{}C.
Finally, if a 4-cycle in Hi+1 contains u2u3 but avoids u3u4u1, then we may re-

place the ith step (of type (B3)) by one (A4)-step (adding u2u3) and one (A3)-step
(adding u3u4u1). This yields a construction sequence free from (B3), which implies

(as argued above) that G is bipartite and G \not \rightarrow \vec{}C. Similarly, if Hi+1 contains a new
4-cycle which avoids u2u3, then we may replace the ith step by one (A3)-step (adding

u3u4u1) and one (A4)-step (adding u2u3) and also conclude that G \not \rightarrow \vec{}C.
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5.3.2. Cycles of length at least 5. We now generalize Theorem 5.5 for oriented
cycles with at least 5 vertices.

Theorem 5.10. Let \vec{}C be an orientation of C\ell , where \ell \geq 5. If G is a graph
and m(G) < m2(C\ell ), then G \not \rightarrow \vec{}C.

We use the following results.

Remark 5.11. Let G be a C5-component. If G can be constructed solely by steps
of type (A2), then every cycle in G has length congruent to 2 (mod 3).

Proof. The proof is by induction on i \in [t] where (H1, . . . ,Ht) is the construction
sequence of G. The base holds because H1 is a 5-cycle. Now suppose every cycle
in Hi has length congruent to 2 (mod 3), where i \geq 1. We form Hi+1 by a step of
type (A2), i.e., by adding a 5-path P joining the endvertices of an edge uv of Hi. Any
new cycle C is formed by an uv-path P \prime inHi, together with P . If P \prime = uv, then C has
length 5, and the claim holds. On the other hand, if uv /\in E(P \prime ), then C = P \prime \cup P ,
but since C \prime := P \prime + uv is a cycle in Hi, it follows that e(C \prime ) \equiv 2 (mod 3), so
e(C) = e(P \prime ) + e(P ) = e(C \prime ) - 1 + e(P ) \equiv 2 (mod 3).

Remark 5.12. Let G be a C5-component. If G is constructed solely by steps of
the types (A2) and (A3), then G contains no C3 and no C4.

Proof. Let (H1, . . . ,Ht) be a construction sequence of G. Note that C3 \nsubseteq G:
indeed, C3 \nsubseteq H1 sinceH1 is a C5; moreover, for each i \in [t - 1] we haveHi+1 = Hi\cup Qi,
and Qi is a path of length at least 3 which is internally disjoint from Hi, so C3 \nsubseteq Hi+1.

Similarly C4 \nsubseteq H1, and if Hi\cup Qi contains a C4, then type(i) = (A3), so xi and zi
are connected by a path xiwzi in Hi (which, together with Qi, creates a C5). But
then xiwzixi is a C3 in G, a contradiction.

We are now in position to prove the main result of this section.

Proof of Theorem 5.10. Let G be a graph with m(G) < (\ell  - 1)/(\ell  - 2), where

\ell \geq 5, and let \vec{}C be an oriented \ell -cycle. By Lemma 5.4, if \vec{}C contains a long block,
then G \not \rightarrow \vec{}C, so we may assume that every block of \vec{}C has length at most two. We
will show that the C\ell -components of G admit an orientation in which every \ell -cycle
has a long block. It suffices to consider one such component F , as C\ell -components
can be independently oriented (they do not share edges) and remaining edges can be
arbitrarily oriented (each \ell -cycle in G lies in some C\ell -component).

Let F be a C\ell -component (H1, . . . ,Ht) of G. Hence, for all i \in [t - 1], each \ell -cycle
C \subseteq Hi+1 which did not exist in Hi contains either the subpath xiQiyi or yiQizi (if Qi

intersects Hi in three vertices) or the whole new path Qi. (We write aPb to denote
the subpath of P whose endvertices are a and b.)

Case 0. For each i \in [t - 1] we have type(i) \in \{ Aj : 2 \leq j < \ell  - 1\} .
For each i \in [t  - 1], every new cycle in Hi+1 contains Qi and e(Qi) \geq 3. We

construct an orientation of F which avoids \vec{}C as follows. Fix a directed orientation
of H1, and for each i \in [t  - 1] fix a directed orientation of Qi. Clearly H1 does not

contain \vec{}C, and for each i \in [t  - 1] every new \ell -cycle in Hi+1 contains a long block

(since Qi is directed), so F \not \rightarrow \vec{}C.

Case 1. There is precisely one index i \in [t - 1] such that type(i) = (A\ell  - 1).
Let Qi = xivzi, and let C be an \ell -cycle in Hi containing zi. We may assume

that H1 = C. Note that e(Qj) \geq 3 for each j \in [t - 1]\setminus \{ i\} since (by Proposition 5.7)
type(j) \in \{ (A2), (A3), (A4)\} and also \ell \geq 6 if type(j) = (A4) for some j. We orient F
as follows.
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Firstly, orient H1 so that zi is the origin of a long block, and so that zi has
no inneighbors in H1. Secondly, for each j \in [i  - 1], orient Qj forming a directed
path, while ensuring that zi has no inneighbors in Hj+1. (This is possible since, if
Qj contains zi, then zi is an endvertex of Qj .) Orient Qi as a directed path from xi

to zi. Finally, for each j \in [t - 1] \setminus [i] orient Qj so as to form a directed path.

Clearly, the orientation of H1 avoids \vec{}C. Since e(Qj) \geq 3 for each j \in [t - 1] \setminus \{ i\} ,
each new \ell -cycle in Hj+1 has a long block (as it contains Qj). Finally, every new
cycle C in Hi+1 must contain Qi as well as some edge ziz \in E(Hi). As zi has no
inneighbors in Hi, the edge ziz extends the directed path xi \rightarrow v \rightarrow zi, forming a
long block in C. This shows that every \ell -cycle has a long block, so F \not \rightarrow \vec{}C.

Case 2. There exists i \in [t - 1] such that type(i) = (A\ell ).
Let \alpha \in [t  - 1]. By Proposition 5.7, if \alpha \not = i, then type(\alpha ) \in \{ (A2), (A3)\} , so

e(Q\alpha ) \geq 3. We may assume that H1 is an \ell -cycle in Hi containing zi. We orient the
edges of F as follows. Let N be the set of neighbors of zi in Hi.

First orient H1 with two blocks of length at least 2 and origin zi (see Figure 1).
Next, for each j \in [i - 1], we do the following. If no endvertex of Qj lies in \{ zi\} \cup N , fix
an arbitrary directed orientation of Qj . If a single endvertex q of Qj lies in \{ zi\} \cup N ,
then orient Qj to form a directed path with origin q. If both endvertices q, r of Qj

lie in \{ zi\} \cup N , where we assume r \not = zi, then orient Qj so that it has precisely two
blocks, starting from q and r, and so that the latter has precisely one arc. Finally,
orient xi \rightarrow zi, and for each j \in [t - 1]\setminus [i] fix a directed orientation ofQj (see Figure 1).

Let us check that every \ell -cycle in F has a long block. This is clearly true in H1.
Now suppose \alpha \in [t  - 1] \setminus \{ i\} . Note that each new cycle in H\alpha +1 contains Q\alpha and
that e(Q\alpha ) \geq 3 since type(\alpha ) \in \{ (A2), (A3)\} . Moreover, Q\alpha has a block of length
at least e(Q\alpha )  - 1 if \alpha < i, and a block of length at least e(Q\alpha ) if \alpha > i. Hence, if
e(Q\alpha ) \geq 4 or if \alpha > i, then Q\alpha has a long block. So we may suppose that \ell = 5,
e(Q\alpha ) = 3, and \alpha \in [i  - 1]. Hence type(\alpha ) = (A3), and there is precisely one new
5-cycle C in H\alpha +1 (as otherwise two 3-paths joining x\alpha and z\alpha , would form a 4-cycle
in H\alpha , contradicting Remark 5.12). If

\bigm| \bigm| \{ x\alpha , z\alpha \} \cap (\{ zi\} \cup N)
\bigm| \bigm| \leq 1, then C has a

long block containing Q\alpha . Otherwise, \{ x\alpha , z\alpha \} \subseteq \{ zi\} \cup N . Note that x\alpha zz\alpha \subseteq H\alpha 

for some z \in V (H\alpha ) since C \subseteq H\alpha +1; if zi \in \{ x\alpha , z\alpha \} , then x\alpha z\alpha \in E(Hi), so
x\alpha z\alpha zx\alpha is a triangle in Hi, contradicting Remark 5.12. Therefore zi /\in \{ x\alpha , z\alpha \} ,
so C = Q\alpha \cup x\alpha ziz\alpha (since z \not = zi implies x\alpha zz\alpha zix\alpha is a 4-cycle in Hi, which
contradicts Remark 5.12). Since Q\alpha has a directed 3-path from either x\alpha or z\alpha to
a vertex w \in V (Q\alpha ) \setminus V (H\alpha ), and both x\alpha and z\alpha are outneighbors of zi, it follows
that C has a long block.

To conclude Case 2, we consider the new \ell -cycles in Hi+1. Each of these cycles
contains the arc xi \rightarrow zi, so it suffices to show that every 3-path zizw in Hi (where

zi··
·

q a

· · ·· · ·

q r

· · ·

Fig. 1. Orientations in Case 2. Left: orientation of H1; note H1 has a long block starting
from zi (since \ell \geq 5). Center and right: orientations of Q\alpha (where \alpha \not = i); in the figure, a /\in \{ zi\} \cup N ,
r \in N , and q \in \{ zi\} \cup N , where N := NHi

(zi).
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xi /\in \{ z, w\} ) is directed from zi to w. Note that for each j \in [i  - 1] and each pair
of distinct new edges e1, e2 in Hj+1, there exist distinct new vertices v1 \in e1, v2 \in e2
in Hj+1. It follows that either zizw \subseteq H1 (if no edge of zizw lies in some Qj with
j \in [i - 1]); or ziz \in H\alpha and zw \subseteq Q\alpha and z is an endvertex of Q\alpha for some \alpha \in [i - 1]
(if each Qj contains at most one edge of zizw); or zizw \subseteq Q\beta and zi is an endvertex
of Q\beta for some \beta \in [i  - 1] (if some Q\beta contains all edges of zizw). In each of these
cases zizw has the required orientation.

Hence every \ell -cycle of F has a long block and F \not \rightarrow \vec{}C.

Case 3. There exist i, j \in [t - 1] such that type(i) = type(j) = (A\ell  - 1).
By Proposition 5.7 we have \ell = 5 and type(\alpha ) = (A2) for each \alpha \in [t - 1] \setminus \{ i, j\} .

We may suppose i < j. Let P = xiu2u3zi \subseteq Hi and Q = xjv2v3zj \subseteq Hj , and
let Qi = xiu5zi and Qj = xjv5zj . By Remark 5.11, every cycle in Hi has length
congruent to 2 modulo 3, so Hi contains no C3, no C4, and no C6. In particular, since
the union of two distinct 4-paths with common ends contains a cycle with one of these
lengths (see Figure 2), we conclude that P is the unique 4-path between xi and zi
in Hi and hence the unique such path in Hi+1. The argument splits into three cases
according to how the 5-cycles in Hi intersect P .

Case (a). There exists a 5-cycle C in Hi containing P .
We may assume that H1 = C = xiu2u3zixxi and that H2 = Hi+1 = C \cup xiu5zi,

so i = 1. We first prove that

(5.1) Hj contains no C3, no C6, and precisely one C4.

Crucially, note that a step of type (A2) cannot create a C3 or a C4. Therefore,
since H1 \simeq C5, each C3 and each C4 in Hj were created in the ith step resulting
in Hi+1. Since Hi+1 is the union of C and ziu5xi, we conclude that C3 \nsubseteq Hi+1,
so C3 \nsubseteq Hj ; moreover, the unique C4 \subseteq Hj is xixziu5xi. It remains to show that Hj

contains no C6. Suppose, looking for a contradiction, that \alpha \in [j  - 1] is the smallest
index such that H\alpha +1 has a 6-cycle C \prime . Note that Hi+1 contains no C6, so \alpha > i.
Since type(\alpha ) = (A2), it follows that C \prime contains a path abcde whose edges are new
in H\alpha +1, so C \prime = abcdefa for some f \in V (H\alpha ). Moreover, abcdea is a (new) 5-cycle
in H\alpha +1. We conclude that aefa is a 3-cycle in H\alpha , which is a contradiction since
C3 \nsubseteq Hj . This proves (5.1).

Claim 5.13. There exists e \in E(Hj) with e \cap \{ xj , zj\} \not = \emptyset which lies in every
4-path from xj to zj in Hj.

Proof. By (5.1), every 4-path between xj and zj in Hj other than Q inter-
sects xjv2v3zj (i.e., Q) in precisely one edge h; moreover, h \not = v2v3 (as C3 \nsubseteq Hj ;
see Figure 2). If Claim 5.13 is false, then there are paths xjxv3zj and xjv2yzj in Hj

with x \not = v2 and y \not = v3. But this contradicts (5.1), because then either Hj has a
3-cycle xjxv2xj (if x = y) or Hj contains distinct 4-cycles xjxv3v2xj and v2v3zjyv2
(if x \not = y).

Fig. 2. Unions of distinct 4-paths with common endvertices.
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We now return to the proof of Case (a), describing the orientation of F . Let e
be the edge common to all 4-paths between xj and zj in Hj (as per Claim 5.13).
Orient H1 so that it is a directed cycle. For every \alpha \in [t  - 1] \setminus \{ j\} , orient the new
edges to form a directed path. Finally, orient xjv5zj so that the path it forms with e
is directed.

Let us check that every 5-cycle in F has a long block. Clearly, the two 5-cycles
in H2 have each a long block. For each \alpha \in [t - 1] \setminus \{ i, j\} , each new 5-cycle in H\alpha +1

contains Q\alpha and hence has a long block (e(Q\alpha ) \geq 3 since type(\alpha ) = (A2)). Finally,
every new 5-cycle in Hj+1 contains the directed path formed by e and xjv5zj . We

conclude that F \not \rightarrow \vec{}C.

Case (b). There exists a 5-cycle C in Hi containing precisely two edges of P .
We may assume that no 5-cycle in Hi contains all edges of P ; otherwise we would

be done by Case (a). Note that C cannot avoid u2u3, since C3 \nsubseteq Hi. We may therefore
assume that C is a 5-cycle in Hi with ziu3u2 \subseteq C and that H1 = C.

Let \alpha \in [t  - 1] be such that u2xi is new in H\alpha +1, and let C\alpha be a new 5-cycle
in H\alpha +1 containing u2xi. Note that type(\alpha ) = (A2), so Q\alpha = u2xixyv, where
u2, v \in V (H\alpha ) and xi, x, y /\in V (H\alpha ). We modify the construction sequence of F
to a construction sequence of F where the ith step is omitted and the \alpha th step is
replaced by consecutive steps adding, in this order, u2xiu5zi and xixyv. In the new
sequence, type(\alpha ) = type(\alpha + 1) = (A3), type(j) = (A4) = (A\ell  - 1), and each other

step remains of type (A2). By the argument in Case 2, F \not \rightarrow \vec{}C.

Case (c). Every 5-cycle in Hi contains at most one edge of P .
This is similar to the preceding case. Let C = H1 be a 5-cycle containing ziu3.

We first show that if u2u3 is new in H\alpha +1 and u2xi is new in H\beta +1, then \alpha < \beta < i.
(Note that for all j \in [i  - 1] every edge in Hj lies in a 5-cycle.) Indeed, \alpha , \beta < i by
definition, and \alpha \not = \beta as otherwise a cycle in H\alpha +1 would contain two edges of P .
Moreover, type(\alpha ) = type(\beta ) = (A2) by Proposition 5.7, so each new edge in H\alpha +1

and H\beta +1 contains at least one new endvertex. Hence \alpha < \beta .
Let Q\beta = u2xixyv, where u2, v \in V (H\beta ) and xi, x, y /\in V (H\beta ). As in Case (b),

we define an alternative construction sequence of F , where the ith step is omitted
and the \beta th step is replaced by consecutive steps adding u2xiu5zi and xixyv (in this

order). By Case 2, F \not \rightarrow \vec{}C.

Case 4. There exists i \in [t - 1] such that type(i) = (Bj), where 3 \leq j \leq \ell  - 1.
By Proposition 5.7, for each \alpha \in [t  - 1] \setminus \{ i\} we have type(\alpha ) = (A2), and thus

e(Q\alpha ) \geq 3. Recall that yi \in V (Qi) \cap Hi. Note that no new cycle in Hi+1 avoids
both xiQiyi and yiQizi.

If a new \ell -cycle in Hi+1 contains xiQiyi but not yiQizi, then there exists an alter-
native construction sequence of F which satisfies the hypothesis of one of the previous
cases, and hence and F \not \rightarrow \vec{}C: indeed, we may replace the ith step in (H1, . . . ,Ht) by
consecutive steps adding xiQiyi and yiQizi (a similar exchange appears at the end of
the proof of Theorem 5.8). We argue similarly if a new \ell -cycle in Hi+1 avoids xiQiyi.

If every new \ell -cycle in Hi+1 contains all of Qi, then for each \alpha \in [t - 1] every new
cycle in H\alpha +1 contains Q\alpha . We fix a directed orientation of H1 and orient Q\alpha as a
directed path for each \alpha \in [t - 1]. Then H1 has a long block, and for all \alpha \in [t - 1] the

new \ell -cycles in H\alpha +1 have a long block as well (since e(Q\alpha ) \geq 3). Hence, F \not \rightarrow \vec{}C.

6. Proof of the main theorem (Theorem 2.1). Theorem 4.1 establishes

the case t = 3 of Theorem 2.1. We may therefore suppose \vec{}H is either an acyclic
orientation of H \in \{ Kt, Ct\} , with t \geq 4, or that \vec{}H is an anti-directed orientation of a
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strictly 2-balanced graph H with \delta (H) \geq 2. In each one of these cases \vec{}H is 2-Ramsey-
avoidable (by Remark 3.3), so (by Theorems 1.1 and 2.2 together with Lemmas 3.2

and 3.4) it suffices to show that G \not \rightarrow \vec{}H whenever m(G) < m2(H). Indeed, this
follows by Theorem 5.1 (when H is complete), by Theorems 5.8 and 5.10 (when H is
a cycle), and by Corollary 5.3 otherwise.

7. Concluding remarks. We have shown that if \vec{}H is an oriented clique or cycle,

then the threshold for G(n, p) \rightarrow \vec{}H is n - 1/m2( \vec{}H) except if \vec{}H \simeq TT3. Interestingly,

TT3 is not the only oriented graph whose threshold is not of the form n - 1/m2( \vec{}H).
For instance, fix \varepsilon > 0, and construct \vec{}G from an oriented tree \vec{}T of order n1/2 - \varepsilon by
identifying with each v \in V (\vec{}T ) the source of a distinct copy \vec{}Hv of TT3. It can be

shown that p\vec{}G \ll n - 1/m2(\vec{}G) = n - 1/m2(TT3). In a forthcoming paper, the authors

describe a richer class of oriented graphs \vec{}G for which p\vec{}G \ll n - 1/m2(\vec{}G).
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